001     19627
005     20210129210725.0
024 7 _ |2 pmid
|a pmid:22182770
024 7 _ |2 DOI
|a 10.1016/j.neuroimage.2011.12.007
024 7 _ |2 WOS
|a WOS:000301218700057
037 _ _ |a PreJuSER-19627
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |0 P:(DE-Juel1)131699
|a Müller, V.I.
|b 0
|u FZJ
245 _ _ |a Crossmodal interactions in audiovisual emotion processing
260 _ _ |a Orlando, Fla.
|b Academic Press
|c 2012
300 _ _ |a 553 - 561
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 4545
|a NeuroImage
|v 60
|x 1053-8119
|y 1
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Emotion in daily life is often expressed in a multimodal fashion. Consequently emotional information from one modality can influence processing in another. In a previous fMRI study we assessed the neural correlates of audio-visual integration and found that activity in the left amygdala is significantly attenuated when a neutral stimulus is paired with an emotional one compared to conditions where emotional stimuli were present in both channels. Here we used dynamic causal modelling to investigate the effective connectivity in the neuronal network underlying this emotion presence congruence effect. Our results provided strong evidence in favor of a model family, differing only in the interhemispheric interactions. All winning models share a connection from the bilateral fusiform gyrus (FFG) into the left amygdala and a non-linear modulatory influence of bilateral posterior superior temporal sulcus (pSTS) on these connections. This result indicates that the pSTS not only integrates multi-modal information from visual and auditory regions (as reflected in our model by significant feed-forward connections) but also gates the influence of the sensory information on the left amygdala, leading to attenuation of amygdala activity when a neutral stimulus is integrated. Moreover, we found a significant lateralization of the FFG due to stronger driving input by the stimuli (faces) into the right hemisphere, whereas such lateralization was not present for sound-driven input into the superior temporal gyrus. In summary, our data provides further evidence for a rightward lateralization of the FFG and in particular for a key role of the pSTS in the integration and gating of audio-visual emotional information.
536 _ _ |0 G:(DE-Juel1)FUEK409
|2 G:(DE-HGF)
|x 0
|c FUEK409
|a Funktion und Dysfunktion des Nervensystems (FUEK409)
536 _ _ |0 G:(DE-HGF)POF2-89571
|a 89571 - Connectivity and Activity (POF2-89571)
|c POF2-89571
|f POF II T
|x 1
588 _ _ |a Dataset connected to Pubmed
650 _ 2 |2 MeSH
|a Auditory Perception: physiology
650 _ 2 |2 MeSH
|a Brain: physiology
650 _ 2 |2 MeSH
|a Emotions: physiology
650 _ 2 |2 MeSH
|a Female
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Magnetic Resonance Imaging
650 _ 2 |2 MeSH
|a Male
650 _ 2 |2 MeSH
|a Visual Perception: physiology
700 1 _ |0 P:(DE-Juel1)131855
|a Cieslik, E.C.
|b 1
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Turetsky, B.I.
|b 2
700 1 _ |0 P:(DE-Juel1)131678
|a Eickhoff, S.B.
|b 3
|u FZJ
773 _ _ |0 PERI:(DE-600)1471418-8
|a 10.1016/j.neuroimage.2011.12.007
|g Vol. 60, p. 553 - 561
|p 553 - 561
|q 60<553 - 561
|t NeuroImage
|v 60
|x 1053-8119
|y 2012
856 7 _ |u http://dx.doi.org/10.1016/j.neuroimage.2011.12.007
909 C O |o oai:juser.fz-juelich.de:19627
|p VDB
913 2 _ |0 G:(DE-HGF)POF3-571
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Connectivity and Activity
|x 0
913 1 _ |0 G:(DE-HGF)POF2-89571
|a DE-HGF
|v Connectivity and Activity
|x 1
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2012
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|g INM
|k INM-2
|l Molekulare Organisation des Gehirns
|x 0
970 _ _ |a VDB:(DE-Juel1)134513
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21