000019632 001__ 19632 000019632 005__ 20210129210725.0 000019632 0247_ $$2pmid$$apmid:21963913 000019632 0247_ $$2pmc$$apmc:PMC3254820 000019632 0247_ $$2DOI$$a10.1016/j.neuroimage.2011.09.017 000019632 0247_ $$2WOS$$aWOS:000299494000037 000019632 0247_ $$2altmetric$$aaltmetric:1363331 000019632 037__ $$aPreJuSER-19632 000019632 041__ $$aeng 000019632 082__ $$a610 000019632 084__ $$2WoS$$aNeurosciences 000019632 084__ $$2WoS$$aNeuroimaging 000019632 084__ $$2WoS$$aRadiology, Nuclear Medicine & Medical Imaging 000019632 1001_ $$0P:(DE-Juel1)131678$$aEickhoff, S.B.$$b0$$uFZJ 000019632 245__ $$aActivation likelihood estimation meta-analyis revisited 000019632 260__ $$aOrlando, Fla.$$bAcademic Press$$c2012 000019632 300__ $$a2349- 2361 000019632 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000019632 3367_ $$2DataCite$$aOutput Types/Journal article 000019632 3367_ $$00$$2EndNote$$aJournal Article 000019632 3367_ $$2BibTeX$$aARTICLE 000019632 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000019632 3367_ $$2DRIVER$$aarticle 000019632 440_0 $$04545$$aNeuroImage$$v59$$x1053-8119$$y3 000019632 500__ $$aWe acknowledge funding by the Human Brain Project (R01-MH074457-01A1; PTF, ARL, SBE), the DFG (IRTG 1328; SBE, DB) and the Helmholtz Initiative on Systems-Biology "The Human Brain Model" (SBE). 000019632 520__ $$aA widely used technique for coordinate-based meta-analysis of neuroimaging data is activation likelihood estimation (ALE), which determines the convergence of foci reported from different experiments. ALE analysis involves modelling these foci as probability distributions whose width is based on empirical estimates of the spatial uncertainty due to the between-subject and between-template variability of neuroimaging data. ALE results are assessed against a null-distribution of random spatial association between experiments, resulting in random-effects inference. In the present revision of this algorithm, we address two remaining drawbacks of the previous algorithm. First, the assessment of spatial association between experiments was based on a highly time-consuming permutation test, which nevertheless entailed the danger of underestimating the right tail of the null-distribution. In this report, we outline how this previous approach may be replaced by a faster and more precise analytical method. Second, the previously applied correction procedure, i.e. controlling the false discovery rate (FDR), is supplemented by new approaches for correcting the family-wise error rate and the cluster-level significance. The different alternatives for drawing inference on meta-analytic results are evaluated on an exemplary dataset on face perception as well as discussed with respect to their methodological limitations and advantages. In summary, we thus replaced the previous permutation algorithm with a faster and more rigorous analytical solution for the null-distribution and comprehensively address the issue of multiple-comparison corrections. The proposed revision of the ALE-algorithm should provide an improved tool for conducting coordinate-based meta-analyses on functional imaging data. 000019632 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems (FUEK409)$$cFUEK409$$x0 000019632 536__ $$0G:(DE-HGF)POF2-89574$$a89574 - Theory, modelling and simulation (POF2-89574)$$cPOF2-89574$$fPOF II T$$x1 000019632 588__ $$aDataset connected to Web of Science, Pubmed 000019632 65320 $$2Author$$afMRI 000019632 65320 $$2Author$$aPET 000019632 65320 $$2Author$$aPermutation 000019632 65320 $$2Author$$aInference 000019632 65320 $$2Author$$aCluster-thresholding 000019632 650_2 $$2MeSH$$aAlgorithms 000019632 650_2 $$2MeSH$$aBrain: anatomy & histology 000019632 650_2 $$2MeSH$$aCluster Analysis 000019632 650_2 $$2MeSH$$aData Interpretation, Statistical 000019632 650_2 $$2MeSH$$aFalse Positive Reactions 000019632 650_2 $$2MeSH$$aHumans 000019632 650_2 $$2MeSH$$aImage Processing, Computer-Assisted: methods 000019632 650_2 $$2MeSH$$aImage Processing, Computer-Assisted: statistics & numerical data 000019632 650_2 $$2MeSH$$aLikelihood Functions 000019632 650_2 $$2MeSH$$aMagnetic Resonance Imaging: methods 000019632 650_2 $$2MeSH$$aMagnetic Resonance Imaging: statistics & numerical data 000019632 650_2 $$2MeSH$$aMeta-Analysis as Topic 000019632 650_2 $$2MeSH$$aPositron-Emission Tomography: methods 000019632 650_2 $$2MeSH$$aPositron-Emission Tomography: statistics & numerical data 000019632 650_2 $$2MeSH$$aSignal Processing, Computer-Assisted 000019632 650_7 $$2WoSType$$aJ 000019632 7001_ $$0P:(DE-Juel1)136848$$aBzdok, D.$$b1$$uFZJ 000019632 7001_ $$0P:(DE-Juel1)VDB78077$$aLaird, A.R.$$b2$$uFZJ 000019632 7001_ $$0P:(DE-Juel1)VDB67936$$aKurth, F.$$b3$$uFZJ 000019632 7001_ $$0P:(DE-HGF)0$$aFox, P.T.$$b4 000019632 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2011.09.017$$gVol. 59, p. 2349- 2361$$p2349- 2361$$q59<2349- 2361$$tNeuroImage$$v59$$x1053-8119$$y2012 000019632 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3254820 000019632 909CO $$ooai:juser.fz-juelich.de:19632$$pVDB 000019632 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed 000019632 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000019632 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000019632 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000019632 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000019632 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000019632 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000019632 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000019632 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000019632 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000019632 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000019632 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000019632 9141_ $$y2012 000019632 9132_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0 000019632 9131_ $$0G:(DE-HGF)POF2-89574$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vTheory, modelling and simulation$$x1 000019632 9201_ $$0I:(DE-Juel1)INM-2-20090406$$gINM$$kINM-2$$lMolekulare Organisation des Gehirns$$x0 000019632 9201_ $$0I:(DE-Juel1)INM-1-20090406$$gINM$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x1 000019632 970__ $$aVDB:(DE-Juel1)134518 000019632 980__ $$aVDB 000019632 980__ $$aConvertedRecord 000019632 980__ $$ajournal 000019632 980__ $$aI:(DE-Juel1)INM-2-20090406 000019632 980__ $$aI:(DE-Juel1)INM-1-20090406 000019632 980__ $$aUNRESTRICTED 000019632 981__ $$aI:(DE-Juel1)INM-1-20090406