001     19632
005     20210129210725.0
024 7 _ |2 pmid
|a pmid:21963913
024 7 _ |2 pmc
|a pmc:PMC3254820
024 7 _ |2 DOI
|a 10.1016/j.neuroimage.2011.09.017
024 7 _ |2 WOS
|a WOS:000299494000037
024 7 _ |a altmetric:1363331
|2 altmetric
037 _ _ |a PreJuSER-19632
041 _ _ |a eng
082 _ _ |a 610
084 _ _ |2 WoS
|a Neurosciences
084 _ _ |2 WoS
|a Neuroimaging
084 _ _ |2 WoS
|a Radiology, Nuclear Medicine & Medical Imaging
100 1 _ |0 P:(DE-Juel1)131678
|a Eickhoff, S.B.
|b 0
|u FZJ
245 _ _ |a Activation likelihood estimation meta-analyis revisited
260 _ _ |a Orlando, Fla.
|b Academic Press
|c 2012
300 _ _ |a 2349- 2361
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 4545
|a NeuroImage
|v 59
|x 1053-8119
|y 3
500 _ _ |a We acknowledge funding by the Human Brain Project (R01-MH074457-01A1; PTF, ARL, SBE), the DFG (IRTG 1328; SBE, DB) and the Helmholtz Initiative on Systems-Biology "The Human Brain Model" (SBE).
520 _ _ |a A widely used technique for coordinate-based meta-analysis of neuroimaging data is activation likelihood estimation (ALE), which determines the convergence of foci reported from different experiments. ALE analysis involves modelling these foci as probability distributions whose width is based on empirical estimates of the spatial uncertainty due to the between-subject and between-template variability of neuroimaging data. ALE results are assessed against a null-distribution of random spatial association between experiments, resulting in random-effects inference. In the present revision of this algorithm, we address two remaining drawbacks of the previous algorithm. First, the assessment of spatial association between experiments was based on a highly time-consuming permutation test, which nevertheless entailed the danger of underestimating the right tail of the null-distribution. In this report, we outline how this previous approach may be replaced by a faster and more precise analytical method. Second, the previously applied correction procedure, i.e. controlling the false discovery rate (FDR), is supplemented by new approaches for correcting the family-wise error rate and the cluster-level significance. The different alternatives for drawing inference on meta-analytic results are evaluated on an exemplary dataset on face perception as well as discussed with respect to their methodological limitations and advantages. In summary, we thus replaced the previous permutation algorithm with a faster and more rigorous analytical solution for the null-distribution and comprehensively address the issue of multiple-comparison corrections. The proposed revision of the ALE-algorithm should provide an improved tool for conducting coordinate-based meta-analyses on functional imaging data.
536 _ _ |0 G:(DE-Juel1)FUEK409
|2 G:(DE-HGF)
|x 0
|c FUEK409
|a Funktion und Dysfunktion des Nervensystems (FUEK409)
536 _ _ |0 G:(DE-HGF)POF2-89574
|a 89574 - Theory, modelling and simulation (POF2-89574)
|c POF2-89574
|f POF II T
|x 1
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Algorithms
650 _ 2 |2 MeSH
|a Brain: anatomy & histology
650 _ 2 |2 MeSH
|a Cluster Analysis
650 _ 2 |2 MeSH
|a Data Interpretation, Statistical
650 _ 2 |2 MeSH
|a False Positive Reactions
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Image Processing, Computer-Assisted: methods
650 _ 2 |2 MeSH
|a Image Processing, Computer-Assisted: statistics & numerical data
650 _ 2 |2 MeSH
|a Likelihood Functions
650 _ 2 |2 MeSH
|a Magnetic Resonance Imaging: methods
650 _ 2 |2 MeSH
|a Magnetic Resonance Imaging: statistics & numerical data
650 _ 2 |2 MeSH
|a Meta-Analysis as Topic
650 _ 2 |2 MeSH
|a Positron-Emission Tomography: methods
650 _ 2 |2 MeSH
|a Positron-Emission Tomography: statistics & numerical data
650 _ 2 |2 MeSH
|a Signal Processing, Computer-Assisted
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a fMRI
653 2 0 |2 Author
|a PET
653 2 0 |2 Author
|a Permutation
653 2 0 |2 Author
|a Inference
653 2 0 |2 Author
|a Cluster-thresholding
700 1 _ |0 P:(DE-Juel1)136848
|a Bzdok, D.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB78077
|a Laird, A.R.
|b 2
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB67936
|a Kurth, F.
|b 3
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Fox, P.T.
|b 4
773 _ _ |0 PERI:(DE-600)1471418-8
|a 10.1016/j.neuroimage.2011.09.017
|g Vol. 59, p. 2349- 2361
|p 2349- 2361
|q 59<2349- 2361
|t NeuroImage
|v 59
|x 1053-8119
|y 2012
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3254820
909 C O |o oai:juser.fz-juelich.de:19632
|p VDB
913 2 _ |0 G:(DE-HGF)POF3-574
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Theory, modelling and simulation
|x 0
913 1 _ |0 G:(DE-HGF)POF2-89574
|a DE-HGF
|v Theory, modelling and simulation
|x 1
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2012
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|g INM
|k INM-2
|l Molekulare Organisation des Gehirns
|x 0
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|g INM
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 1
970 _ _ |a VDB:(DE-Juel1)134518
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)INM-1-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21