
PHYSICAL REVIEW B 85, 024204 (2012)

Modeling aging rates in a simple glass and its melt
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We calculated with a molecular dynamics simulation the aging rates in a binary Lennard-Jones glass and its

undercooled melt. At temperatures above the mode coupling theory (MCT) critical temperature Tc, pressure

or volume, internal energy, and diffusivity age with the same rate. Below Tc we see a split of the aging rates

into a fast one for the diffusivity and a much slower one for pressure or volume and internal energy. The latter

aging rate is roughly proportional to the diffusivity. The observed stretched exponential behavior is shown to

stem from the faster aging of the diffusivity. Aging of of internal energy and pressure proceeds exponentially

with the mean-square displacement. The exponential prefactor exhibits the kink at Tc seen earlier in the pressure

dependence of the diffusivity.
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I. INTRODUCTION

If a liquid is quenched to a lower temperature or differ-

ent pressure it takes time to relax to its thermodynamical

equilibrium state. The lower the temperature, the longer the

relaxation time. Crossing the glass transition temperature Tg ,

thermodynamic equilibrium will no longer be reached in

experimental times. The liquid state has changed to the glassy

one. The relaxation toward thermodynamic equilibrium—the

aging—affects most properties of the glass and is, therefore, of

great technological importance and has been studied widely.

Most often the decrease of enthalpy or volume with time is

followed.1 The relaxation toward equilibrium slows down with

time, and is commonly described by a Kohlrausch-Williams-

Watts (KWW) stretched exponential expression, sometimes

with additional modifications. The physical origin of the

stretching is still disputed. The time evolution of the dynamics

in simple glass formers has been studied less frequently. One

line of investigation is the study of the frequency-dependent

dielectric susceptibility, e.g., in glycerol,2,3 which again ages

with a KWW law. Metallic glasses represent the most simple

systems with no internal freedom. Their dynamics is restricted

to translational motion of the atoms. Short-time dynamics

on a picosecond time scale is seen in ballistic motion and

vibration. Apart from some reduction in soft vibrations, not

much is known about their aging effects. The longer time

dynamics is most easily seen in atomic diffusion. Hórvath

et al.4 experimentally observed a decrease of the diffusion

coefficients of metallic glasses by an order of magnitude during

aging. The other simple class, colloidal suspensions, has been

studied extensively in recent years (see, e.g., Ref. 5), but it

involves Brownian dynamics which could have some influence

on aging.

We use molecular dynamics simulation to study the relation

between aging of the dynamics and of energy and pressure in

a model metallic glass. As the dynamic variable we take the

diffusivity, since we expect this to be most directly coupled to

energy and volume relaxation. Our simulation is done at near

zero pressure using a slightly modified version of the binary

Lennard-Jones system.6 There are several earlier studies for

this system, mostly with a temperature-independent density,

which implies high pressures that increase with temperature.

A scaling law for the aging of the intermediate scattering

function was found,7 which was later disputed.8 These cal-

culations were done for stochastic velocity distributions so

that a direct comparison with the present calculation, using

Newtonian dynamics, is not possible. From calculations of the

change of the inherent energies it was found that a single fictive

temperature Tf suffices to describe the state above the mode

coupling temperature, whereas at lower temperature a history

dependence is observed.9 A decrease of the number of atomic

jumps per time unit with aging time was reported.10

II. CALCULATIONAL DETAILS

The present calculations are done for a binary Lennard-

Jones system described by

Vij (R) = 4ǫij [(σij/R)12 − (σij/R)6 + AijR + Bij ], (1)

where the subscripts i and j denote the two species A and B.

The potential cutoff was set at Rc = 3σ . For the parameters we

took the values of Kob and Andersen:6 ǫAA = ǫ = σAA = σ =

1, ǫBB = 0.5, σBB = 0.88, ǫAB = 1.5, and σAB = 0.8. The

parameters Aij and Bij ensure continuity of the potential and

its first derivative at the cutoff. All masses are set to mj = 1.

As usual, in the following we will give all results in the reduced

units of energy ǫ, σ , and atomic mass. To compare with real

metallic glasses one can equate one time unit [(ǫ/mσ 2)−1/2]

roughly to 1 ps. The time step is �t = 0.005. Control runs

with �t = 0.0005 showed no significant deviation. The heat

bath is simulated by comparing the temperature averaged over

20 time steps with the nominal temperature. At each time

step 1% of the temperature difference is adjusted by random

additions to the particle velocities. Apart from the very first

steps of the aging procedure, the correction, after excursions

of the temperature due to relaxations, does not exceed 10−4

of the average velocity. This procedure assures that existing

correlations between the motion of atoms are only minimally

affected. The calculations are done with constant volume and

periodic boundary conditions. The system size was N = 5488

with a ratio of 4 :1 between A and B atoms.

For the present aging studies 64 samples for T � 0.4

and 8 samples for T < 0.4 were suddenly quenched from

equilibrated and, respectively, well aged samples at Ti =

T + 0.2 to the aging temperature T . The densities were fixed
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to give, after aging, p ≈ 0. The maximal final pressure was

p∞ = 0.03. In units appropriate to a metallic glass, p∞ would

be less than 1 kbar. Neither segregation nor crystallization was

observed during the aging runs. In control runs with different

quench protocols, including quenches by �T = 0.08 from

above to below Tc, the aging rates were found to be independent

of the procedure within 20%. The weights of the aging terms

reflect the history of the glass.

III. RESULTS

Earlier we reported, for this system at zero pressure,

the diffusional isotope effect11 and the pressure dependence

(activation volume).12 Above Tc ≈ 0.36 the diffusion coeffi-

cients of both components can be given by a mode coupling

theory (MCT) expression13 D(T ) = DMCT
0 (T − Tc)γ with

Tc = 0.36ǫ/k, and below by an Arrhenius expression D(T ) =

DArrh
0 exp(−Ea/kT ). From the isotope effect we conclude that,

upon lowering the temperature, diffusion becomes collective

and, at the critical MCT temperature Tc ≈ 0.36, involves in

excess of ten atoms, in agreement with the chain- (string-)like

motion reported for such systems. Accordingly, the diffusional

activation volumes are smaller than the atomic volume, and

as expected from MCT they show a peak at Tc. At T =

0.32 ≈ 0.9Tc the aging of both the diffusivity and the dynamic

heterogeneity can be described by a simple exponential law.

The same aging constant not only describes the relaxation

of the diffusivities of both components, but also the increase

of their respective non-Gaussianity parameters αNG, which

measure the dynamic heterogeneity. During the aging process

αNG increased by about a factor of 2 and the time to reach

this maximum grew simultaneously: both the strength and the

lifetime of the dynamic heterogeneity increase with aging. The

better aged the glass, the higher is its dynamic heterogeneity.14

In all runs pressure and energy were monitored. The time-

dependent diffusion constant was calculated from the slope of

the atomic mean-square displacements:

D(t) =
1

6

d〈s2(t)〉

dt
. (2)

This expression holds only for times large enough to exclude

the ballistic and vibrational regimes, and at lower temperatures

also the plateau effect, which is a signature of reversible motion

that is also present in equilibrium. Therefore, short-time

aging effects of the diffusivity cannot be extracted using this

expression.

We fit the time evolution by a KWW expression

Q(T ,t) = Q∞(T ) + �Q(T )e−[αQ(T )t]
βQ (T )

, (3)

where Q stands for pressure (p), internal energy (E), or

the diffusion coefficients Dx of the two components. Q∞

represents the long-time limit. It should be noted that the

KWW expression with β �= 1 depends on the waiting time

tw. It changes under the transformation t = tw + t ′. For β = 1

only the prefactor �Q(T ) depends on tw. The same holds

for our result, Eq. (4). The aging of the diffusion coefficients

can be fitted without a stretching factor in Eq. (3). A possible

stretching effect, βD �= 1, is hidden in the inaccessible short-

time aging. We do the fitting with βD = 1 and a common

αD(T ) for both components. The resulting long-time diffusion
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FIG. 1. (Color online) Diffusion coefficients D∞ (majority A

atoms, diamonds; minority B atoms, circles) at near-zero pressure

against inverse temperature (all in reduced units). The dashed lines

show the fits with the MCT and Arrhenius expressions, respectively.

coefficients are shown in Fig. 1. The dashed lines show

the MCT fit for high temperatures and the Arrhenius lines

below Tc.

Figure 2, top, illustrates the aging of D at T ≈ 0.9Tc

[symbols denote the simulation; dashed red lines are fits with

Eq. (3)]. The diffusivities drop by an order of magnitude during

aging. For longer times there is a small additional decrease

of the diffusivity. The diffusivity follows the slower pressure

relaxation. For the present system this effect is small and

only slightly affects the numerical values. The much slower
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FIG. 2. (Color online) Top: diffusion coefficients (majority A

atoms, solid diamonds; minority B atoms, solid circles) against

aging time. The red dashed line is the fit using Eq. (3), with

αD = 4.3 × 10−5 and βD = 1, in LJ units. Bottom: pressure against

aging time. Red dashed line: fit with αD; blue dash-dotted line: fit

with αp = 1.4 × 10−5 in LJ units.
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FIG. 3. (Color online) Pressure (top) and potential energy (bot-

tom) against aging time. Blue solid line: fit according to Eq. (3)

without stretching exponent; red dashed line: fit with stretching

exponent β = 0.5; green dash-dotted line: fit according to Eq. (4).

decrease of the pressure is depicted in Fig. 2, bottom. To

illustrate the slower decay, the red dashed curve indicates a

fit with the aging rate of the diffusion, with αp = αD , and

βp = 1. A much better fit is obtained with αp ≈ αD/3. For

short times the simple exponential expression, for β = 1,

underestimates the pressure decrease. Due to the pronounced

stretching behavior (see below), this value of αp is still too

high. A fit to the pressure decay over longer time scales, Fig. 3,

gives αp reduced by a factor of 4.

As reported earlier for the simultaneous aging of diffusivity

and dynamic heterogeneity,14 we find that pressure and internal

energy age in parallel; see Fig. 3. For long times aging can be

fitted by an exponential law with αp = αE (solid blue line). To

fit the aging also at shorter times, stretching has to be included.

An accurate determination of β with sufficient accuracy is not

possible from the present data. A value of βp = βe = 0.5 gives

an excellent fit. This value is roughly compatible with the ones

obtained from experiment.1

The decay constants for diffusivity αD and for pressure

and energy αp = αe are plotted in Fig. 4 against inverse

temperature. Above Tc diffusivity and pressure age with the

same constants and no stretching is discernible. Below Tc

the behavior changes. The two aging curves split; aging of

the diffusivity is much faster than the one of pressure and

energy. Apart from the initial stage an exponential law suffices

to fit the aging of D. The much weaker additional aging

due to the aging of pressure is neglected. In contrast, the

aging curves for both energy and pressure show a pronounced

stretched exponential (KWW) shape. The solid symbols show

the exponential fit to the long-time decay and the open symbols

the KWW fit with β = 0.5. Over the whole temperature

range the aging rate of pressure and energy follows approx-

imately the diffusivity, αp = αE ≈ 24Deff/σ
2 (dashed lines),

with D−1
eff = 0.8D−1

A + 0.2D−1
B . Remarkably this holds both

in the MCT and Arrhenius regimes.

This suggests introducing an aging length ℓp,E to describe

aging of p and E:

p(T ,t) = p∞(T ) + �pe−(〈s2
eff (t)〉−〈s2

ball〉)/ℓp,E (T ). (4)
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FIG. 4. (Color online) Aging exponents for pressure and internal

energy (circles) and for the diffusion coefficient and the dynamic

heterogeneity (triangles). The solid symbols refer to fits without

stretching exponent, the open symbols to a stretching exponent

β = 0.5. The error bars are estimates of the fit reliability. The dashed

lines show the fits with the MCT and Arrhenius expressions for D∞

above and below Tc, respectively.

Here sball is the ballistic (vibrational) mean-square displace-

ment, and the effective mean square displacement is defined

by 1/〈s2
eff〉 = 0.8/〈s2

A〉 + 0.2/〈s2
B〉. In the present case 〈s2

eff〉 ≈

〈s2
A〉. As shown by the green dash-dotted line in Fig. 3, Eq. (4)

gives a near perfect fit of the aging of pressure and energy,

including the stretching effect. The curves with the KWW fit

nearly coincide with the fit by Eq. (4). The observed stretching

in the aging of pressure and energy is thus an effect of the

faster aging of the diffusivity. Since there is little change in

the compressibility during aging, this holds for the aging of

volume for fixed pressure.

In Fig. 4 it was shown that αp,E ≈ 24Deff/σ
2, which

corresponds to ℓp,E ≈ 0.5σ . In Ref. 12 the change of diffusion

coefficient with pressure was studied for the equilibrium or

long-time limit. In this work a sharp maximum at T = Tc was

observed in the activation volume

Vact(T ) = −kT

[

∂ ln D(T )

∂p

]

T

. (5)

Vact is a measure of the coupling between diffusivity and

pressure. Since Eq. (4) couples the diffusivity and the change

of pressure during aging, a similar temperature dependence of

ℓp,E could be expected. Figure 5 shows both ℓp,E(T ) (red solid

circles) and Vact (blue diamonds) against temperature. Whereas

ℓp,E(T ) roughly has the the expected value of 0.5σ , it peaks

near Tc as previously observed for the equilibrium diffusional

activation volume. The two peak positions seem not to fully

coincide. This is most probably an effect of the aging history.

The calculation of the activation volume was as near as possible

under equilibrium conditions. During the aging calculation the

pressure changed with time, and the critical MCT temperature

of a freshly quenched glass is not well defined. 〈s2
eff(t)〉 is an

integral over stages with different pressures and Tc. We would
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FIG. 5. (Color online) Red solid circles: aging length against

temperature. The dotted line represent the approximate fit with the

MCT and Arrhenius expressions in Fig. 4. Blue solid diamonds and

dashed line: calculated diffusional activation volume and MCT fit.12

The error bars are estimates of the fit reliability.

expect that, starting from a glass nearer to its equilibrium, the

two maxima will be closer in temperature.

IV. DISCUSSION

If one considers aging as an evolution of the glass to a

lower-energy state, one can envisage the aging process as the

annihilation of defects, whatever they might be. �Q(T ) in

Eq. (3) would then be the concentration of such defects at the

start, cdef(0), times the defect strength.14 The exponential gives

the annihilation rate, and a stretching in the KWW law could be

ascribed to a distribution of activation energies.1 With one type

of defect only, all quantities age in parallel, only distinguished

by different defect strengths. Such a scenario is compatible

with our results for T > Tc. However, at lower temperatures

we find at least two different aging rates in the system: a higher

rate for the diffusivity and a much lower one for pressure and

energy.

It has been known for a long time that near Tc a transition

from homogeneous to heterogeneous dynamics occurs. One

standard measure of heterogeneity is the so called non-

Gaussianity parameter (NGP),15 α2. It is a measure of the

deviation of the van Hove autocorrelation function from a

Gaussian shape, as one would have for isotropic random

motion. Such deviations are regularly observed in simulations

of metallic systems; see, e.g., Ref. 16. Upon cooling the

high pressure LJ system to its Tc, a maximal value of the

NGP, αmax ≈ 2, was observed. That is ten times the value at

T = 2Tc.6 Due to the high pressure in that simulation, the

Tc was about 20% higher than the present value. For the

present system under near-zero pressure conditions, a similar

value at Tc was reported. Upon cooling beyond a temperature

somewhat above Tc, αmax started to increase rapidly.14

Taking the picture of an inherent energy landscape, the

system moves from one local minimum to another by a

collective motion of a few atoms.17 Lowering the temperature,

the possible paths for such transitions are thinned out. In

simulations of metallic systems this collective motion was

seen to be chain- or string-like. In the glassy state diffusional

motion was reported to involve such chain- (string-)like

structures,18 closely correlated to the quasilocalized vibrations

that are thought to cause the “boson peak” in the inelastic

scattering intensity.19,20 Similar structures were seen in the

undercooled melt.21,22 If such a string of atoms has jumped

once, it is more likely to jump again, thus creating spikes

of activity.16,20,23 After each jump some atoms will leave the

string and others join. This picture provides an explanation of

the time evolution of the NGP and its increase upon lowering

the temperature.24 Similar behavior is observed for different

systems.24 Monitoring the tails of the van Hove function, a

general scenario was found for systems ranging from silica to

colloids and grains, and again was rationalized with a model

of correlated jumps.25

This scenario is held to be responsible for the breakdown

of the Stokes-Einstein relation (SER) between diffusivity

and viscosity.26 Diffusivity is determined mainly by the fast

atoms, while viscosity necessitates the slow atoms to move.

Similarly pressure and energy relaxation will involve at longer

times all atoms. Recent experiments on Ni36Zr64 have shown

that the SER breaks down far above Tc.27 The temperature

dependence of the ratio between viscosity and diffusion points

to a collective mechanism. The same break in the temperature

dependence in the SER was found in a computer simulation of

CuZr2.28

The mean-field description of mode coupling theory pre-

dicts a freezing of the system at Tc. However, before this

happens dynamic processes take over that are not included or

are added to the simple theory as hopping processes take over.

For diffusion this can be seen in Fig. 1 as the crossover to

an Arrhenius behavior above Tc. For different properties the

weighting between the different dynamic processes will differ,

and thus there will not be an exact universal crossover temper-

ature. The onset of the freezing according to mode coupling

theory can, however, be seen in the pressure dependence of the

diffusion12 and in the present work in the spike in the aging

length; see Fig. 5.

The crossover from a homogeneous scenario, with a single

aging rate above Tx ≈ Tc, to at heterogeneous one, with at

least two different rates below Tx , implies that a single fictive

temperature is not sufficient to describe the state of the system

below Tx . This is in agreement with earlier work.2,9,29

Molecular dynamics is limited to small system sizes and

times of up to a few microseconds. Therefore, no statement

about possible additional ultraslow relaxation processes30 can

be made. We are also limited to temperatures not too far below

Tc and therefore to not-too-high dynamic heterogeneities. At

lower temperatures the averaging used for 〈s2
eff(t)〉 might be

to simple. Inverse averaging would put a higher weight on the

slow particles. Aging experiments measuring simultaneously

volume and diffusivity in metallic glasses could clarify

this.

V. CONCLUSION

In conclusion, we studied aging in a binary model glass near

zero pressure. In agreement with a homogeneous scenario,

above a temperature Tx ≈ Tc energy, pressure, and diffusivity
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age with the same rate nearly exponentially. Below Tx the

diffusivity ages much faster than energy and pressure. This

crossover coincides with the onset of a marked dynamic

heterogeneity. A pronounced stretching is seen in the aging

of energy and pressure. The decrease of their aging rates upon

cooling roughly follows the drop of the diffusivity, both in

the homogeneous (MCT) regime and in the low-temperature

Arrhenius one. Aging of energy and pressure can be expressed

in terms of the mean-square displacement. Their aging can

be expressed in terms of an aging length that spikes similarly

to the pressure dependence of the diffusivity. The stretched

exponential aging of energy and pressure results from the

faster aging of the diffusivity, which relates it to the dynamic

heterogeneity.
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