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Using the Rogers-Young (RY) integral equation scheme for the static structure factor combined
with the one-phase Hansen-Verlet (HV) freezing rule, we study the equilibrium structure and
two-parameter freezing lines of colloidal particles with Yukawa-type pair interactions represent-
ing charge-stabilized silica spheres suspended in dimethylformamide (DMF). Results are presented
for a vast range of concentrations, salinities and effective charges covering particles with masked
excluded-volume interactions. The freezing lines were obtained for the low-charge and high-charge
solutions of the static structure factor, for various two-parameter sets of experimentally accessible
system parameters. All RY-HV based freezing lines can be mapped on a universal fluid-solid co-
existence line in good agreement with computer simulation predictions. The RY-HV calculations
extend the freezing lines obtained in earlier simulations to a broader parameter range. The ex-
perimentally observed fluid-bce-fluid reentrant transition of charged silica spheres in DMF can be
explained using the freezing lines obtained in this work. © 2012 American Institute of Physics.

[doi:10.1063/1.3675607]

. INTRODUCTION

A wide class of industrially and biologically relevant dis-
persions of charge-stabilized colloidal particles of globular
shape!=® can be described by a repulsive Yukawa-type effec-
tive pair energy of the form’

Butr) = L 2 ek 2 p—kr
-k 1+«a r’

in combination with an excluded-volume interaction charac-
terized by the hard-sphere diameter . Here, 8 = 1/(kgT) with
Boltzmann constant kz and temperature 7, r is the center-
to-center separation of two spheres, Lp = el(e kgT) is the
Bjerrum length of the suspending fluid of dielectric constant
¢, and Z is the effective number of elementary charges, e, on a
colloidal particle. The Debye screening parameter, «, is given
by’

r>o=2a )

,_ 4rLgln|Z| +2C]

= s )

It comprises a contribution from (monovalent) counterions re-
leased from the surfaces of colloids with number density n,
and a contribution from the co- and counterions of an added
1-1 electrolyte of number density Cs. The factor 1/(1 — ¢),
where ¢ = (47/3)na’, is the colloid volume fraction, cor-
rects for the free volume accessible to the small microions.
This Yukawa-type pair energy captures essential features of
charge-stabilized suspensions, for systems where the short-
range van der Waals attractions can be neglected. For a sta-
ble suspension, the electrostatic repulsion is strong enough
to prevent contact configurations, i.e., rendering them ex-
tremely unlikely, so that the excluded volume interactions
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are of no consequence. Well-studied experimental systems
which fall into this category are (sulfonate) polystyrene latex
spheres in water®® or in an ethanol-water mixture,>* silica
and polymethylacrylate (PMMA) spheres in an organic sol-
vent (mixture),® %! and to some extent also charged globu-
lar proteins in water such as apoferritin'>!'* or bovine serum
albumin (BSA).'% 13

The pair potential in Eq. (1) depends on four dimen-
sionless parameter groups {Lg/o , Z, C,o3, ¢}, which can
be controlled experimentally to a larger extent. However, the
important subclass of systems with masked hard-core inter-
actions is completely characterized by two independent pa-
rameters only.'® A convenient choice of these parameters for
theoretical discussions is'®

A= {r), (3)

. kT

T=—2 4
u ({r)) @

where X is the geometric (simple-cubic) mean particle dis-
tance, (r) = n~'3, expressed in units of the Debye screen-
ing length x~!, and 7 measures the thermal energy relative
to the potential energy, u({r)), of a pair of particles at dis-
tance r = (r). Different combinations of the four parame-
ters {Lp/o ,Z, C,o3, ¢} sharing the same fluid-phase state
point {A,T} also share the same static structure factors, S(g),
and radial distribution functions (rdf), g(r), for the scatter-
ing wavenumber g and pair distance r measured in units
of < I’) '17, 18

The universal A — 7 phase diagram of these effectively
point-like Yukawa particles is quite simple, and has been well
explored over the past 20 years.'® 71927 [t consists of a single
(supercritical) fluid phase that can freeze into an fcc or a bee

© 2012 American Institute of Physics
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solid, characterized by 8 or 12 next neighbor particles, respec-
tively. The phase diagram has a single triple point but no crit-
ical point, since the pair interactions in this one-component
system are purely repulsive.

Note that the extended phase diagram not considered
in the present work, where the g(r) of hard-sphere-Yukawa
particles is allowed to be discontinuous at contact distance,
r = o, is more complicated, showing an additional fluid-fcc-
bec triple point.!”?327 Moreover, a third parameter, namely,
the volume fraction ¢, is then required in addition to A and
T, to fully characterize the phase behavior and static pair cor-
relations. If the hard core matters physically, in actual sus-
pensions of charged particles one needs to consider then the
attractive van der Waals forces which tend to destabilize the
system, changing the phase behavior away from that of a pure
hard-sphere Yukawa system.

The aim of this paper is to provide a thorough theoret-
ical exploration of two-parametric liquid-solid freezing lines
in colloidal Yukawa-particle systems with masked excluded
volume interactions, for a wide range of experimentally ad-
justable control parameters such as the particle volume frac-
tion, effective charge, and the added salt concentration. For
each discussed two-parameter freezing line diagram, the third
parameter is varied over a very broad range of values. The
present work should thus prove helpful to experimentalists
who plan to perform experiments on concentrated charge-
stabilized suspensions near to a freezing transition. The user-
friendly freezing line diagrams discussed in this paper, which
are expressed in terms of experimental control parameters,
are not deducible in general from the universal T —A phase
diagram, due to the aforementioned non-reciprocal mapping
from {Lg/o , Z,Cs0>, ¢} to {A,T}.

The extensive parameter scans presented here have been
obtained using the accurate Rogers-Young (RY) integral
equation scheme in combination with the fluid-phase Hansen-
Verlet (HV) rule for the principal peak height, S{(g,,), of the
static structure factor S(q) at freezing. Here, g, is the scatter-
ing wavenumber reciprocally related to the size of the next-
neighbor cage formed around each particle.”-2® The HV crite-
rion is a semi-empirical rule found in computer simulations
on atomic liquids and colloidal fluids. It can be motivated
by the density-wave mean field theory of freezing, accord-
ing to which a fluid approaching freezing becomes increas-
ingly unstable against spontaneous density modulations of
wave vectors of magnitude near ¢,, which at freezing change
the uniform fluid density profile to the periodic profile of the
crystal >-30

The RY-HV method allows for a conveniently fast, and
as we will show in comparison to the universal 7—2X dia-
gram, quite accurate calculation of freezing lines in various
parameter representations. A detailed study of experimental-
parameter freezing lines on the basis of computer simulations
or elaborate density functional theory calculations of similar
generality as the one presented here, would have been numer-
ically very expensive and time consuming. We show that the
fast RY-HV method predicts a universal freezing line in the
A — T phase-space in good overall agreement with simula-
tion results by Stevens and Robbins,?? Meijer and Frenkel,2°
and Hamaguchi et al.,?* however, extending these earlier re-
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sults to substantially larger values of A. Note here again that,
while A — T phase space considerations are important from
a theoretical viewpoint, the experimentally controllable pa-
rameters such as salt concentration and effective charge can-
not be uniquely determined from A and 7 alone. The good
agreement justifies our usage of the RY-HV scheme in study-
ing various structural properties under freezing conditions.
As an interesting experimental result, we will show that the
most recent and most accurate Yukawa spheres simulation re-
sult by Hamaguchi et al.?* for the bcc—fee coexistence line,
which is located in 7—A phase space noticeably away from
the one predicted by Robbins et al.,'® and for the bec phase re-
gion extending to A values substantially larger than the one in
Ref. 16 is fully consistent with our x-ray scattering data for
silica spheres in DMF.

For neutral hard spheres, one finds Sdg,) = 2.85 at
freezing.>! For the charge-stabilized colloidal systems with
soft Yukawa repulsion studied in this work, where the hard
core plays no physical role, a constant value of S{g,,) = 3.1
is used. This value is in agreement with the experimental
peak height obtained from our x-ray scattering experiments on
coated, charge-stabilized silica spheres suspended in DMF,'?
and conforms to computer simulation results,'>?? and density
functional theory calculations,?® where for masked-core
Yukawa particles freezing values of S{g,,) around 3 have been
reported. According to our calculations, the two-parametric
freezing lines do not change appreciably when the HV peak
value is altered by 0.1. The present work on thermodynamic
and structural freezing lines complements related theoretical
work on short-time diffusion in silica-DMF suspensions.?
In this earlier work, the same HV freezing value of 3.1 was
used in deriving a universal limiting freezing line for the peak
height of the hydrodynamic function, a quantity central to
dynamic scattering experiments in the colloidal short-time
regime.

We emphasize here that the thermodynamically self-
consistent RY integral equation scheme is required to obtain
precise values for the effective particle charge. Usage of a less
accurate scheme such as the analytical rescaled mean spher-
ical approximation (RMSA) might for a number of systems
even lead to a failure in predicting a freezing transition. Very
recently, an improved variant of the RMSA for hard-sphere
Yukawa fluids has been derived, referred to as the modified
penetrating-background-corrected RMSA (MPB-RMSA, for
short),!® which combines the analyticity of the RMSA so-
lution for S(g) with a strongly improved accuracy. However,
different from the RY scheme, the MPB-RMSA is thermody-
namically not self-consistent and somewhat less accurate in
its predictions for g(r). Therefore, we use here the RY scheme
for the price of a larger numerical effort.

As we have already discussed in earlier works,'%3? for
the Yukawa pair potential in Eq. (1) there exist two separated
branches of effective charge values with pairwise very simi-
lar static structure factors in each branch which can be hardly
distinguished experimentally. The existence of these two so-
lutions has been overlooked in many earlier applications. To
gain a complete survey on two-parameter freezing lines, both
the low-charge branch and high-charge branch solutions for
S(g) have been determined and discussed, on pointing to
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differing trends which allow for distinguishing these solu-
tions. Our discussion should prove helpful in deciding which
of the two solutions (i.e., which of the two in general largely
different effective charge numbers) is the physical one for the
system under study.

The present paper is not concerned with the on-going
discussion on how the effective charge, Ze, in Eq. (1) is
quantitatively related to a bare particle charge, commonly re-
ferred to as the colloid charge renormalization problem. The
bare charge is usually defined on a more fundamental, so-
called Primitive Model level of description where the col-
loidal particle and the microions are treated equally as uni-
formly charged spheres of different sizes. Poisson-Boltzmann
type cell model,*® renormalized jellium model methods,3*-3°
and non-mean-field generalizations accounting for the effect
of multivalent microions,?’ have been derived which allow for
calculating the effective charge approximately as a function of
volume fraction, salt concentration, and bare colloid charge.
Noteworthy here is a recent phase diagram calculation®® for
Yukawa spheres with built-in (approximate) charge renormal-
ization, for particles at constant zeta potential. We refrain here
from including charge-renormalization into our quantitative
analysis of freezing lines, not only for maintaining the pa-
per in an acceptable size, but also since the calculated renor-
malized charge values can differ substantially, depending on
the charge renormalization method and the invoked chemical
charge regulation scheme.

We are also not dealing here with the exploration of
non-pairwise additivity effects in the electrostatic interactions
which can play arole for A < 2, i.e., for deionized suspensions
of comparatively large particle concentrations.'”

The present paper (labeled I) focuses on the construc-
tion and discussion of freezing lines in terms of experimen-
tally accessible parameters. In a related forthcoming paper by
the same authors (labeled II), we will discuss the behavior of
pair energies at freezing in relation to characteristic features
in S(g) and g(r).

The paper is organized as follows: Sec. II summarizes our
method of calculating freezing lines for different system pa-
rameters. Numerical and experimental results and discussion
for the freezing lines are presented in Sec. III. RY-HV con-
struction of freezing lines is presented in Subsection III A.
Differences in the low-charge (LZ) and high-charge (HZ) so-
lutions of the RY scheme are discussed in Subsection III B.
Three sets of two-parameter freezing lines are presented in
Subsection III C. In subsection III D, the RY-HV predicted
universal freezing line in the A — T space is compared to
simulation predictions by different groups. The salt-induced
fluid-bcce-fluid reentrant transition is investigated in Subsec-
tion IIT E. Our conclusions are given in Sec. [V.

Il. METHOD OF CALCULATION AND
EXPERIMENTAL DETAILS

In this paper, we provide a detailed theoretical explo-
ration of two-parameter freezing lines for monovalent col-
loidal Yukawa spheres of pair interaction according to Eq. (1),
with masked excluded volume interactions. The particle di-
ameter and the solvent properties have been selected to
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describe charged silica spheres suspended in dimethylfor-
mamide (DMF). Our results cover a broad range of volume
fractions ¢, 1-1 electrolyte concentrations C;, and effective
particle charge numbers Z. We discuss the form of the freez-
ing lines for different pairs of the experimentally controllable
parameters ¢, Cy, and Z.

The freezing lines are obtained using the standard RY
integral equation method for the static structure factor S(g),
in combination with the HV freezing rule for its principal
peak height. Since we are concerned here with the important
class of charge-stabilized systems where the particle hard-
core plays no physical role, a constant peak height value of
Sgm) = 3.1 is used to characterize the onset of freezing
into a crystalline state. The employed RY method is a hybrid
method which interpolates continuously between the Percus-
Yevick closure at small, and the hypernetted chain closure at
long distances, by a single-parameter mixing function. The
mixing parameter is determined by imposing local thermo-
dynamic consistency, i.e., by enforcing equality between the
isothermal compressibilities derived from the compressibility
and virial (pressure) equation of states. For details see Ref. 38.
The RY method has been found, from numerous comparisons
with simulation results for S(g) and g(r) (see, e.g., Refs. 18
and 39), to perform excellently for the (three-dimensional)
hard-sphere plus repulsive Yukawa pair potential. Note that
in this work we use the RY method solely to calculate the pair
correlation functions, not addressing the thermodynamic sub-
tleties which one faces for systems with state-dependent pair
potentials.

The system parameters employed in the theoretical
calculations represent suspensions of monodisperse silica
spheres of diameter 0 = 2a = 171 nm and mass density
p = 1.95 g/cm? in DMF (¢ = 36.7 at T = 20 °C, Bjerrum
length Ly = 1.55 nm), and subjected to a broad range of
added LiCl concentrations. Different from aqueous suspen-
sions, this well-characterized system is not plagued by un-
controlled CO, contamination and self-dissociation of water
molecules. Therefore, systems with very low salinities can be
prepared. For our silica in DMF system, we have obtained a
large body of static and short-time dynamic x-ray scattering
data, for systems in the fluid-phase regime.'® The small-angle
x-ray scattering (SAXS) measurements were performed at the
European Synchrotron Radiation Facility (ESRF) in Greno-
ble using synchrotron radiation at Troika III part of the ID
10A beamline in cooperation with the coauthors of Ref. 10.
The experimental details concerning the beamline and sam-
ple preparation are given in Ref. 10.

lll. RESULTS AND DISCUSSION
A. RY-HV construction of freezing lines

We consider first salt-free suspensions, characterized by
a tiny residual amount, C; = 1x 102 M, of added 1-1 elec-
trolyte (e.g., LiCl).

Figures 1(a) and 2(a) show concentration series of the
RY-calculated static structure factor, obtained on assum-
ing a concentration-independent effective charge number of
Z = 300 and 5000, respectively, in units of the proton charge
e. As can be noticed from these figures, the shape of S(g)
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FIG. 1. (a) RY-calculated static structure factor, S(g), for salt-free suspen-
sions at different volume fractions ¢ = 0.0001, 0.0003, 0.001, 0.003, 0.01,
0.017, 0.03, 0.045, 0.07, 0.1 (from left to right), and constant low-charge
value Z = 300. (b) The principal peak height, S(¢g;,), as a function of ¢. The
horizontal lines mark the HV value, S(g,,) = 3.1, used throughout this paper
as indicator for the onset of freezing.

with increasing volume fraction depends strongly on the ef-
fective charge number. For the low charge value in Figs. 1(a)
and 1(b), the principal maximum, S(g,,), of S(g), located at
the wavenumber position g,,, increases monotonically with
increasing ¢ (more weakly so at lower concentrations), with

(@ 0,002
4+ 7
10
3_
G
a2
10°
1_
0_
0.0 0.1 0.2 0.3
(b) 5-
;E 4_. _-'
~ 3— L
w 1 4
21 /_,-
1.
1——v—rrrnn|—v—rrnm|—v—rnnn|—v—rrrnn|—v—rrrmq—v—rrnnq—v—rrnm|—|

FIG. 2. (a) RY static structure factor for “salt-free” suspension at volume
fractions p =1 x 1078,2 x 1078,3 x 1078,4 x 1078,5 x 1078, 6 x 1078,
7 x 1078, 8 x 1078 (left group) and ¢ = 0.002, 0.003, 0.0045, 0.007, 0.01,
0.02, 0.03, 0.05, 0.07, 0.1, 0.13, 0.15 (right group), using a large effective
charge value of Z = 5000. (b) Principal peak height S(g,,) as a function of ¢
plotted on a linear-log scale. The horizontal lines mark the HV value, S(g,,)
= 3.1, used throughout this paper as indicator for the onset of freezing.
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the peak position shifting to larger wavenumbers. Observe
here in Fig. 1(b) the linear—log scale. The horizontal line rep-
resenting S{q,,) = 3.1 indicates the Hansen-Verlet thresh-
old value at which a Yukawa-type system with masked ex-
cluded volume interactions is about to freeze into a bcc or
fcc solid phase. The structure factors with S(g,,) > 3.1 should
be considered as mere analytic extensions of the fluid-phase
structure factors into a region, where the colloidal system is
not fluid any more. In the following, we will use some of
those “virtual” points for discussion or illustration, but keep-
ing in mind that they do not represent the real state of the
system.

Different from Fig. 1, at very high effective charge val-
ues like the one considered in Fig. 2, S(g,,) becomes a highly
non-monotonic function in ¢. For very small concentrations,
the peak height increases initially, traversing the freezing line
at ¢ ~ 5x1078, subsequently passing through a high maxi-
mum (not resolved on the scale of Fig. 2(b)) which is located
in the non-fluid volume fraction regime. When ¢ is further in-
creased, a reentrant fluid phase is found according to the HV
rule, in a concentration window of 0.0045 < ¢ < 0.11. For ¢
> 0.11, the system freezes again.

The volume fraction dependence of S(g,,) in a “salt-free”
suspension (at C; = 10° M) is shown in Fig. 3, for a se-
ries of effective charges ranging from low values (solid lines)
to high-charge values (dashed lines). The intersection of the
horizontal line, defined by S«{q,,) = 3.1, with the iso-charge
curves gives the freezing transition points.

The concentration window where the reentrant solid-
fluid-solid transition occurs (for charge numbers Z > 3500
in the case of salt-free systems), broadens with increasing Z,
while the primary fluid-phase regime (starting from ¢ = 0) is
narrowed to very small values of ¢.

Similar calculations of S(g,,) have been performed also
for several values of added salt concentration C;. A sum-
mary of these results is shown in Fig. 4. In Fig. 4(a), results
for S(g,,) are presented using a constant charge number of

4.0- 2(1k 8’k 4k

3.5+

3.0

2.0—‘(“‘ L

1.5—/.’ ,P’

1.0 P

FIG. 3. RY static structure factor peak height, S(g,,), as a function of ¢, for
values of Z as indicated (1k = 1000), and constant C; = 0.001 M. Solid
lines are for Z values in the small-charge region Z = 0-1000. The dashed
lines are the high-charge region results for Z = 4000-20 000.
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FIG. 4. Added salt concentration dependence of S(g,,), (a) for a low-charge
value of Z = 500, and (b) for a high-charge value of Z = 4000. The numbers
at the solid curves are the salt concentrations, Cs, in uM (1k = 1000). The
lowest curves in (a) and (b), labeled by HS, represent the neutral hard-sphere
results. Horizontal lines: S(g,,) = 3.1.

Z = 500, representative of the “low charge” behavior (mono-
tonic increase in S(g,,)), for six values of added salt concen-
tration (0.001 uM to 1000 uM in decade steps). The line
obtained for the largest Cy is almost identical to the one de-
scribing a neutral hard-sphere system, whose S(g,,) is also
shown in the figure. In Fig. 4(b), we demonstrate how the ad-
dition of salt affects the behavior of a system at Z = 4000e,
which is a representative high-charge value for low-salt sys-
tems. The non-fluid phase region for intermediate values of
¢, which is very broad for small Cy, narrows with increasing
salt concentration and disappears for 0.5 uM < C; < 1 uM,
although the non-monotonic behavior of S(g,,) as a function
of ¢ is still visible for C; & 1 uM. Contrary to the low-charge
case, a concentration of 1 mM added salt is not yet sufficient
to reach the hard-sphere behavior.

B. Low- and high-charge RY solutions

An interesting observation made in Fig. 3 is that for many
systems of a given volume fraction and salt concentration, the
same structure factor peak height is obtained for two very

J. Chem. Phys. 136, 024507 (2012)
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FIG. 5. Z-dependence of (a) the static structure factor maximum S(g),
(b) the radial distribution function maximum g(r,,), and (c) the pair inter-
action energy at ry = (r) (solid symbols) and at r, = ry,;, (open symbols)
calculated using the RY scheme for ¢ = 0.077, and added salt concentrations
as indicated. Here, r,,, is the distance where g(r) attains its maximum. The
equally colored vertical line pairs in (b) and (c) denote the low-charge and
the high-charge values of Z for a given Cs where the freezing condition S(g,)
= 3.1 is met. The inclined solid line segments in (b) and (c) connect the
freezing points of the corresponding low-charge and high-charge pairs.

different effective charge values (see the crossing points of
solid and dashed curves). To study this finding in more de-
tail, in Fig. 5(a) we plot S(g,,) as a function of Z, for a vol-
ume fraction ¢ = 0.077 and various salt concentrations. The
peak height of S(¢g) as a function of Z passes through a maxi-
mum located roughly in between Z = 1000 and 2000. For low
salt-content, this maximum is located, according to the HV
rule, in the non-fluid regime. Thus, a reentrant fluid—solid—
fluid transition is described for increasing Z. The fluid-phase
charge-number regions to the left and right of the maximum in
S(g.m) are referred to, respectively, as the low-charge and high-
charge regions. In the low-charge (high-charge) region, S(g,,)
increases (decreases) with increasing Z. The width of both
regions grows with increasing salinity. At a sufficiently large
salinity, of value depending on the particle concentration,
the two disjoint fluid-state regions merge into a single one,
describing systems that do not freeze into a solid for any value
of the effective charge (at this particular volume fraction). For
a proper description of this merging, it is crucial to use an
accurate integral equation method such as the RY scheme.
Using a less accurate scheme such as the regularly applied
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analytic RMSA, or the numerical hypernetted chain approx-
imation (HNC), which both underestimate the particle or-
dering to some extent, could result in the prediction of the
absence of a freezing transition for systems where freez-
ing actually takes place. Moreover, precise integral equa-
tion methods, such as the RY scheme and the MPB-RMSA
scheme,'® are necessary to obtain accurate values for the ef-
fective charge.

For the systems regarded in Fig. 5(a), the maximum of
S(gm) is located in between Z = 1000 and 2000, with its posi-
tion shifting to larger charge values for larger salt concentra-
tions. Comparing this to Fig. 3, where zero-salt systems are
considered for fixed values of Z, and where S(g,,) traverses
a maximum as a function of ¢, when the surface-counterion
contribution to k% o ¢ becomes sufficiently strong to over-
compensate the ordering effect caused by the increasing par-
ticle concentration. When ¢ in Fig. 3 is further increased for
a large-Z system, S(g,,) passes through a minimum observed
at ¢ ~ 0.01-0.1. The upswing of S(g,,) at the largest consid-
ered ¢ values located to the right of this minimum is due to
the proximity of next-neighbor particles which are subject to
a sharply rising pair energy.

Figure 5(b) shows the principal peak height, g(r,), of
the radial distribution function (rdf) as a function of Z, for
the same systems as in Fig. 5(a). The vertical line pairs of
equal color indicate, for a given salt concentration, corre-
sponding low-charge and high-charge values of Z where the
criterion S(g,,) = 3.1 is fulfilled. The Z-interval in between a
vertical line pair describes a non-fluid region. The height of
g(ry) at freezing is different for the low-charge and the high-
charge systems, i.e., gd(¥u)high > &(Tm)iow- The relative differ-
ence decreases with increasing salt content. Thus, there is no
simple overall mapping of the HV freezing criterion for the
structure factor peak height to a comparatively simple crite-
rion in terms of g«r,,). A single value for S{g,,) corresponds
in general to a broader range of values for gqr,,) (see also
Ref. 18). The peak values ggq(r,,) for the entire range of the
system parameters will be thoroughly discussed in a related
paper (labeled II).

The Z-dependence of u({r)) and u(r,,), for a constant
¢ and C, varying from 107° M to 20 uM, is analyzed in
Fig. 5(c). Even though r,, is very close to (r) in low-salinity
systems, the pair interaction energy changes so rapidly with
distance that a slightly larger r,, results in a distinctly lower
value of the pair energy, and in the maximum of u(r,,) shifted
to a smaller value of Z. The maximum of S(g,,) as a function Z
in Fig. 5(a), is reflected by a corresponding maximum of u(r,,)
which is located, however, at a smaller value of Z. The maxi-
mum reflects the counterplay of the electric coupling strength,
Bu(o™), and the counterion screening. The latter dominates
for large Z values. The vertical line pairs in Fig. 5(c) indicate
the low-charge and high-charge values where freezing takes
place. A fluid phase is found only outside these charge inter-
val boundaries (bounded by the vertical lines). The pair en-
ergy at freezing is distinctly different for the low-charge and
high-charge values. This points to the impossibility of formu-
lating a freezing criterion in terms of u(r,,) alone. The same
degree of fluid ordering as quantified by S(g,,) can be obtained
for two distinctly different pair interaction energies. The be-
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havior of gAr,) and Bu(r,) at freezing will be discussed in
detail in a related forthcoming paper (labeled II).

At this point, one should consider the physical relevance
of the high-charge solutions for S(g) and g(r). Whether a
high-charge solution is physically relevant depends on the
system under consideration. There are limits to the maxi-
mal value the effective charge can attain in charge-stabilized
suspensions set by the quasi-condensation of counterions
(charge-renormalization effect), and by chemical charge regu-
lation when weakly acid surface groups are present. As noted
in Sec. I, estimates of the effective particle charge can be
obtained from approximate Poisson-Boltzmann calculations
with radial symmetry®*33:3¢ and generalizations to multiva-
lent microions.?” The smallest values for the saturated effec-
tive charge number, Z,,, are found at low salinity. We note
here that Z,, increases significantly with increasing salt con-
centration. For the silica in DMF suspensions studied in,'? ef-
fective charge values Z < 2500 have been obtained from elec-
trophoretic dynamic light scattering measurements performed
on highly diluted samples. For the same salt concentrations
values of Z < 10* in the low charge branch were obtained
from the RY fits to the experimental S(g) in the fluid regime
at ¢ of the order of 0.1. In both the cases, the Z values were
increasing with increasing salt concentration. According to
Fig. 4(a), the range of allowed effective charge values ex-
tends appreciably into the high-charge region. Thus, the high-
charge solutions are included into our discussion not only for
completeness, but also since they can be of relevance for sys-
tems at higher salinity. Moreover, their discussion serves to
point to the still largely unknown fact that there are two quite
similar solutions for S(g) with distinctly different effective
charges.

C. Two-parameter freezing lines

The phase behavior of suspensions of charge-stabilized
colloidal spheres depends, for given particle size and sol-
vent properties, on the effective charge number Z, colloid
volume fraction ¢, and added salt concentration Cy. Since
the corresponding three-dimensional phase diagram would be
cumbersome to display, in the following we focus on two-
dimensional phase diagram sections, obtained from varying
two system parameters while keeping the third one constant.

From the experimental point of view, C, and ¢ are in gen-
eral well-controlled parameters. However, even these param-
eters cannot be precisely determined: the volume fraction at
a particular position in the sample might differ from its nom-
inal value in systems with non-negligible sedimentation, and
the ionic strength in aqueous suspensions can change in an
uncontrolled way due to CO, molecules dissolved in water
and forming carbonic acid. To avoid the latter problem, in our
experiments we use DMF as the suspending solvent. The ef-
fective particle charge Z is determined by the RY fit to the ex-
perimental structure factor peak height. The effective charge
depends on C; and ¢ typically in an involved way through a
general Z = Z (LgZ/a, ka, ¢) dependence. For this reason, the
iso-Z freezing lines we are going to discuss in the following
do not directly correspond to an actual experimental system.
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FIG. 6. C;—¢ phase diagram for a charge series of iso-charge freezing lines,
predicted using the RY scheme with S{(g,,) = 3.1. Solid lines: low-charge
freezing lines for charge values as indicated. Dashed lines: high-charge freez-
ing lines.

However, an experimental freezing line characterizing a con-
centration series can be easily constructed from a family of
iso-charge freezing lines.

In Fig. 6, we show the C;—¢ phase diagram with a fam-
ily of iso-Z freezing lines obtained from the RY scheme in
combination with the HV freezing rule. The freezing lines for
low-charge values (solid curves) increase monotonically in ¢,
indicating that systems of larger salinity solidify at larger con-
centrations. With increasing Z in the low-charge region, the
freezing lines move upwards, most strongly so at very small
volume fractions. Accordingly, the area of the fluid-phase re-
gion extending into the upper left part of the phase diagram
becomes smaller.

When the effective charge is increased above Z =~ 1000,
the iso-charge freezing lines become non-monotonic for
Z =3300-3400 (these lines are not shown in the figure), bend-
ing down at intermediate ¢ values towards the lower right
corner of the diagram until, at Z =~ 3500, the lines become
discontinuous and a reentrant transition is predicted: For con-
stant salinity of C; < 1 uM, a reentrant fluid-solid-fluid-solid
transition sequence is traversed with growing ¢. This tran-
sition sequence occurs for large particle charges and at very
low salinity. It is due to the interplay of the pair energy con-
tact value and the surface-counterions screening, which both
become larger with increasing ¢. The C;—¢ phase space be-
havior of the freezing lines in the high-charge region differs
qualitatively from that in the low-charge region. For exam-
ple, in the high-charge case the fluid-phase area is growing
with increasing Z. For C; > 1 uM, no reentrant transition se-
quence is observed any more and only the right-hand branch
of the high-charge freezing line is accessed. Different from
the low-charge case, freezing lines are shifted to larger con-
centrations when Z is increased. Thus, a putative high-charge
crystal melts when the charge is increased. At this point, it
should be pointed out again that the employed HV criterion
lacks the sensitivity to distinguish a fluid-bce from a fluid-fcc
freezing transition.

From the experimental point of view, another convenient
way to present the phase diagram of a Yukawa-like colloidal
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FIG. 7. Iso-C; freezing lines in the Z—¢ phase calculated using the H-V cri-
terion. The selected Cy values are indicated in the figure. The dashed line
connects points on the iso-C; lines fulfilling the condition Ziow = Zhigh.

system is to use iso-¢ freezing lines in the (Z-Cs) and iso-
Cy freezing lines in the (Z—¢) coordinates. The (Z—¢) phase
diagram is presented in Fig. 7. In this figure, freezing lines for
different constant Cs are shown which define values of Z and
¢ at freezing for a Yukawa system.

Here, one clearly sees that at high ¢ all iso-C; freez-
ing lines both for the low- and high-charge branches collapse
on the corresponding lines of the salt-free system (two black
lines), since for large ¢ the electric screening is dominated by
the counter-ions. In Fig. 7, the low- and high-charge branches
are easily distinguished. They merge continuously with each
other with infinite slope at points where the system freezes at
the lowest ¢ for a given Cs. Close to these points, the low-
and high-charge values are similar and can be quite large, up
to 10°. In agreement with the results in Figs. 3 and 4, for C
< 1 uM an iso-Z horizontal line in Fig. 7 can intersect an iso-
Cs freezing line at only one ¢ value on the low-charge branch
side. Additionally, there will be two phase transition points on
the high-charge branch side, provided the added salt concen-
tration Cy is low enough, so that the iso-C; freezing line has
a minimum at the intermediate concentration range of 0.01
< ¢ < 0.1. For low salt concentrations, three freezing transi-
tions on the high-charge branch are also possible at Z = const.
For salt concentrations higher than about 1 M, for the iso-Z
line there is one freezing transition point either on the low- or
high-charge branch side.

Figure 8 depicts iso-¢ freezing lines in the Z—Cjs phase
diagram, showing that, for a given ¢ and Cj, there are two ef-
fective charge values allowing for freezing: One lower value
for the low-charge and one larger value for the high-charge
branch solution. At a constant Cg, the Z-values of the low-
charge branch decrease, and those of the high charge branch
increase with increasing ¢, provided that ¢ > 0.03. For ¢
< 0.03, the low-charge branch values of Z still decrease with
increasing Cy, whereas the high-charge values decrease within
that interval until reaching a minimum charge value at ¢
~ 0.03. Figure 8 reveals additionally that for each volume
fraction, there is a maximum salt concentration for which the

Downloaded 16 May 2013 to 134.94.122.141. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



024507-8 Gapinski, Naegele, and Patkowski
o
o\.\.
105'E /.\
] *i#?’;’;”* >>p)
_ 104_5 |J ﬂ — e < :
R RV )
N v x> <k * g » 03
4 d & & q02p
3 v 10 /.103 2 4
10 v/v/'/ ././I 10/*/003 p /J
H P < /’/
s o9 s
Il
0 e e E— C— NI
10°  10% 10" 10° 10’ 10° 10°

C, [uM]

FIG. 8. RY-HV predicted iso-¢ freezing lines in the Z-C; phase diagram.
The numbers indicate the values of ¢. The dashed line connects the merging
points of the low- and high-charge branches on the iso-¢ lines.

system can freeze, regardless of how Z is selected. This find-
ing can be understood from the behavior of the S(g,,) vs. Z
curve at constant ¢ given in Fig. 5(a), showing that for low
salt content this curve crosses the horizontal HV line S(g,,)
= 3.1 at two points, corresponding to the low- and high-
charge branch charge values. With increasing salt concentra-
tion the maximum of the S(g;,,) vs. Z curve is decreasing, even-
tually becoming tangential to the horizontal HV line. This
defines the largest salt concentration, at the considered ¢, for
which the system can freeze. At higher salt concentrations the
system remains fluid.

Recall from Figs. 3 and 4 that for low-charge systems,
the iso-charge S(g,,) vs. ¢ curve crosses the horizontal HV
freezing line only at a single ¢ value, while for certain higher
charge systems, three ¢ values are predicted where freezing
can take place. In the iso-¢ freezing line representation in
Fig. 8, this corresponds to the feature that for lower charges
(lower than about 3500), there is only a single constant-¢
freezing line going through a point of given Cs-Z coordinates,
while in the higher charge region (above the dashed line in
Fig. 8) there exist C;—Z points corresponding to three differ-
ent ¢ values. Thus, for an iso-Z system at sufficiently large Z,
a reentrant solid—fluid transition can be traversed when ¢ is
increased.

Both the low- and high-charge branch effective charges
in Figs. 7 and 8 at freezing increase strongly with decreas-
ing colloid concentration. For very low ¢ ~ 1076 to 107 the
values of both the low- and high-charge values required for
freezing are of the order of 10°e. However, it is questionable
whether such large effective charge values can be attained in
an experimentally realized system.

D. Universal freezing line in the 7~'—). phase space

So far, we have discussed freezing line diagrams in terms
of experimentally controllable parameters such as Cs and ¢.
As noted in Sec. I, Yukawa-sphere systems, including the
charge-stabilized colloid systems as a special case, where the
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FIG. 9. (a) Universal 7 — A phase diagram of Yukawa particle systems with
masked hard-core interactions, with data for A < 22. The differently col-
ored solid lines are the melting line predictions, respectively, by Meijer and

Frenkel,? Stevens and Robbins,?? and Hamaguchi et al.,23 using the same

color code as in (b). Solid symbols: RY-HV freezing point predictions using
S(gm) = 3.1. Open symbols: RY-HV predictions using S{q,,) = 3.2. Inset
in (a) shows all RY-HV calculated freezing points corresponding to the re-
sults shown in Figs. 6 and 7. A very broad range of A values is covered here.
(b) Magnified lower-values A part of the phase diagram, showing in addition
the experimental results for the H-series system of silica spheres in DMF
(in green).

physical hard core plays no role, are fully characterized in
their equilibrium phase behavior by two dimensionless pa-
rameters, namely, the reduced screening parameter, A = «(r),
and the reduced temperature T =kgT Ju ({r)). The latter pa-
rameter is a measure of the thermal energy relative to the pair
energy at the (simple-cubic) next-neighbor distance (r). As
thoroughly discussed in Refs. 19,20,22, and 23, there exists a
universal 7 — A phase diagram where systems of equal A and T
share the S(g) and g(r), when (r) is selected as the length unit.

Figure 9(a) displays this universal T — A phase diagram,
including our RY-HV calculated freezing points (solid sym-
bols), for systems of different effective charge values as given
in the figure. Also systems with varying amounts of added salt
are considered (cf. Fig. 4) and, in addition, a number of RY-
HV based freezing points attained for a slightly larger HV
freezing value of S{g,) = 3.2 (open symbols). This serves
to demonstrate that the universal freezing line is insensitive
to smaller changes in selected HV peak value. The freez-
ing line predicted by our RY-HV based data is in remarkably
good overall agreement with the melting line predictions by
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Meijer and Frenkel (MF),?° and Stevens and Robbins (SR),?
and also with the more recent and more accurate MD simula-
tion results for the melting line by Hamaguchi et al.”

In principle, one needs to distinguish the melting line
from the freezing line, with the latter located somewhat above
the former.2>-2%40 However, the difference between the two
lines is quite small for smaller values of A (small miscibil-
ity gap). This is illustrated in Figs. 9(a) and 9(b), showing
both the melting and freezing lines predictions of Stevens and
Robbins.?? In the one-component plasma limit of zero elec-
tric screening, for which T(A =0)=9.383%x 1073, the density
difference between coexisting bcc and fluid phases becomes
exactly zero, i.e., there is an isochoric transition.”> We em-
phasize here that our RY-HV based results cover a large range
of A values, extending well beyond that explored earlier by
Meijer and Frenkel,?’ Stevens and Robbins,?> and Hamaguchi
etal.*

Figure 9(b) magnifies the lower-A part of the phase di-
agram, which includes the bcc phase region. It displays the
original melting line prediction by Robbins, Kremer, and
Grest (RKG),'® in comparison to the more recent MD simu-
lation results by Hamaguchi et al.>* According to Hamaguchi
et al., the triple point of three-phase bee-fee-fluid coexistence
is located at (7;, A;) = (0.2856, 6.90), i.e., at a screening
value A substantially larger than that predicted by RKG. Ac-
cording to Fig. 9(b), the RKG melting line overestimates the
melting temperature and thus the crystal stability. In the fig-
ure, we show additionally the state point of the 5 uM system
of our silica in DMF H series (solid green points to the right)
which will be addressed further down. This state point is lo-
cated inside the bcc pocket region predicted by Hamaguchi
et al., but outside the RGK predicted bce region. Only the bee
phase space pocket by Hamaguchi ef al. is in accord with our
experimental findings of a bce crystal structure for this system
(see Fig. 12).

In Fig. 10, we depict the (7 —A) phase-space tra-
jectory traversed with increasing ¢ by the high-charge

Z =5000e
41 €, =0001uM
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FIG. 10. T — A phase-space trajectory of the high-charge, zero-salinity con-
centration series system of Fig. 2(b) (blue solid line). The arrows on the blue
line indicate the direction of increasing ¢. The trajectory starts in the fluid
phase at an extremely low concentration ¢ ~ 10~8, crossing next the bcc and
then the fcc crystal phase at around ¢ = 6.82x 1078, returning to the fluid
phase at ¢ = 4.39x 1073, and finally crossing into the fcc phase at ¢ ~ 0.10.
Inset: ¢ dependence of A and 7 along the trajectory.

J. Chem. Phys. 136, 024507 (2012)

(Z = 5000) and ““zero-salinity” (Cy = 10~ M) concentra-
tion series, whose RY structure factors have been presented
already in Fig. 2. The complex shape of this trajectory, which
intersects the freezing/melting lines three times, results from
the non-monotonic ¢-dependence of the parameters 7 and A
shown in the inset.

E. Salt-induced fluid-bcc-fluid reentrant transition:
Experimental results

From an experimental viewpoint, it is of interest to study
the freezing lines also in the (Z-Cy) phase diagram for systems
of a given ¢. We consider here two volume fractions, namely,
¢ = 0.077 and ¢ = 0.14. In recent x-ray experiments,'® we
have studied silica in DMF systems at these two volume frac-
tions as a function of C;. As in our earlier work, we refer
to them here as the added salt series H (¢ = 0.077) and
K (¢ =0.14).

Consider in Fig. 11 first the lower-concentrated system at
¢ = 0.077. The lower (upper) part of the freezing line for the
low-charge (high-charge) branch systems is determined by the
RY-HV scheme using S{q,,) = 3.1 (solid and open squares).
According to the RY-HV rule, a homogeneous fluid phase ex-
ists only outside the region bounded by the two freezing line
parts. For C; > 20 uM, no solid phase is predicted for any
value of the effective charge.

In comparing the interconnected low- and high-charge
freezing lines for ¢ = 0.14 (open and solid diamonds—
series K) with those for ¢ = 0.077 (open and solid squares—
series H), one notices from Fig. 11 that for the more concen-
trated K series systems the RY-HV predicted freezing values
for Z are located at lower (larger) values on the low-charge
(high-charge) branch of the freezing line. Thus, the crystalline
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FIG. 11. Squares (diamonds) connected by straight line segments: RY-HV
freezing line in the Z—C; phase diagram for ¢ = 0.077 (¢ = 0.140), obtained
using S{(g,) = 3.1. Solid and open symbols represent low- and high-charge
freezing values of Z, respectively. Solid (open) red triangles: values of Z(Cy)
obtained from a RY-fit to the experimental S(g) for the systems of series H
(¢ = 0.077) in Ref. 10 using the low- (high-) charge branch solution. Solid
(open) blue circles: values of Z(Cy) obtained from a RY-fit to the experimental
S(q) for the systems of series K (¢ = 0.14) in Ref. 10 using the low- (high-)
charge branch solution.
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region of the phase diagram is broader for the more concen-
trated C; series, where crystallization is predicted to be absent
for any Z when C; > 68 uM. The lowest experimentally stud-
ied C; value for the series K fluid systems studied in Ref. 10
was 70 uM.

Figure 11 displays additionally the salinity dependence
of the low- and high-charge values of Z in the experimental
salinity series H (¢ = 0.077) and K (¢ = 0.14) within the
fluid regime which have been studied earlier in Ref. 10 by
x-ray synchrotron radiation scattering. The effective charge in
both series was determined from a RY fit to the experimental
S(gq). The experimental trajectories (triangles and circles) for
Z(C,) extend over an added LiCl concentration range of 1073
to 10> uM (Series H) and 70-400 uM (Series K). The ef-
fective charge of the low-charge branch RY solution for both
series increases monotonically with increasing salt concentra-
tion, rather slowly at low salinity but quite steeply at higher
salt content.

The results for Z(C;) in Fig. 11, obtained from the RY fits
to experimental S(q) using the high-charge branch Z solutions
(open triangles), show a very weak C; dependence for both
experimental series. Within the experimental errors, the RY
fits of S(g) are equally good for both branches, so that it is
not possible to decide on the basis of these fits alone whether
the low- or high charge values is assumed in the experimen-
tal system. The explored series K systems at high salt content
(Cs; > 100 uM) are interesting also from the point of view
that in this salinity region the low-charge and high-charge so-
lutions for Z become nearly equal so that the distinction be-
tween the low- and high-charge solutions ceases.

The behavior of the low-charge freezing lines Zyy, (Cy)
in Fig. 11 is consistent with Poisson-Boltzmann theory based
charge-renormalization calculations which predict an increas-
ing effective Z with increasing salt concentration. The experi-
mental trajectory in Fig. 11 of series H suggests, for salt con-
centrations of the order of 1 M, a reentrant fluid-crystal-fluid
transition, with the system being in a fluid state at low C; and
Z. According to the experimental C,—Z trajectory (solid red
points), Z increases sufficiently strongly with C; that crystal-
lization is induced, at a value of C roughly in the region of
1 uM. With further increasing C; (and Z), the screening ef-
fect by the surface-released counterions becomes so strong
that the crystalline system melts again.

While our experimental study in Ref. 10 was focused
on silica spheres in DMF systems located in the fluid phase
regime, a few samples have shown clear evidence of crys-
talline order. An example of SAXS scattering data obtained
for a C; = 5 uM sample of the H series, which was not dis-
cussed in Ref. 10 is given in Fig. 12. In this figure, symbols
(solid circles) represent the experimental static structure fac-
tor data, and the dashed line corresponds to a fluid-like RY
structure factor, calculated using parameters interpolated from
the neighboring liquid points of series H.!° The solid curve
depicts the difference values between the experimental and
RY-calculated structure factors.

From this difference curve, one can immediately rec-
ognize the presence of additional experimental peaks at
g ~ 0.020, 0.029, and 0.035 nm~!, and a broad peak located
in between ¢ = 0.037 nm~! and 0.045 nm~!. The positions

J. Chem. Phys. 136, 024507 (2012)

3.5+
3.0 e experimental S(q)
] % ---- calculated liquid S(q)
25 ° o residua
2 | bcc peak positions

n

q [nm™]

FIG. 12. Experimental SAXS structure factor (solid circles), RY calculated
fluid-system S(g) (dashed curve), and their difference values (solid curve), for
the 5 uM salt content sample of series H. The vertical line segments indicate
the wavenumber locations of the first few bce lattice vectors (with Miller
indices).

of these peaks can be nicely interpreted as the Bragg peak
positions of a bec crystal. The bcc Bragg peak locations are
indicated in Fig. 12 by vertical line segments, labeled by the
corresponding Miller indices. This finding allows us to inter-
pret the (solid) difference line as the excess intensity due to
the diffraction pattern from the crystalline part of the sam-
ple. The Bragg peaks are broadened by crystal imperfections
and their limited size (Scherrer width). Their intensities can-
not be compared since they depend on the colloid-crystal ori-
entation with respect to the incident beam which cannot be
controlled for a polycrystalline sample. Additionally, the ex-
perimental system was optimized for the measurements of
the x-ray photon correlation spectroscopy (XPCS) correlation
functions. For this purpose, a point detector was used, with
the consequence that a full detection in reciprocal space has
not been possible. However, the positions of the peaks on the
wavenumber axis, clearly indicative here of a bce structure,
are not affected.

It is interesting to note from Fig. 12 that the principal
peak of the RY-S(g), and the first Bragg peak are partially
overlapping. In fact, if there wouldn’t be other Bragg peaks
visible, one could be tempted to interpret the main experimen-
tal peak at ¢ &~ 0.020 as the principal peak of a purely fluid-
like S(g), so that from a RY structure factor fit one would ob-
tain a different effective charge value. We have assumed here
that the charge value at C; = 5 uM can be obtained by an
interpolation from the charge values determined from the RY
structure factor fits at C; = 0 and 20 uM, respectively, where
at both salt concentrations the sample was found to remain
fluid-like disordered. For the reasons given in the preceding
paragraph, another scattering experiment of the same sample
at different positions could result in a much higher or lower
principal peak height, depending on the point detector path
with respect to the Bragg peaks positions.

The T —A trajectories of the experimental silica colloids
in DMF systems of series H and K (¢ = 0.077 and 0.14,
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FIG. 13. System trajectories of the H (red symbols) and K series (blue sym-
bols) in the universal 7—A phase diagram obtained by Hamaguchi et al.?
The black freezing line extending beyond the one of Hamaguchi et al. is com-
posed of the freezing points presented in Figs. 6-8. “LZ” and “HZ” denote
the low- and high-charge branch solutions, respectively.

respectively), where the added salt (LiCl) concentration is
varied, are shown in Fig. 13. For both added salt series, the
trajectories of the low- and high-charge branches (denoted by
LZ and HZ, respectively) are clearly different. Regarding the
H-series systems, the LZ-trajectory starts at low A (salt-free
case) in the fluid phase. Subsequently, at L = 5 (Cs =~ 5 uM),
it enters the bce crystal phase just to quickly return back into
the fluid phase at slightly larger A. Thus, a reentrant fluid—
solid—fluid transition is experimentally observed indeed. The
bee structure of the crystal at A & 5 is corroborated by the
SAXS Bragg peaks positions in Fig. 12, characteristic of a
bece crystal.

In Fig. 13, no reentrant behavior is observed in contrast
to the HZ trajectory of the H-series (open red circles), which
tends towards the fcc phase with decreasing A (decreasing salt
concentration). It is interesting to note that the lowest data
point of this HZ trajectory corresponds to the salt-free sample
represented in Fig. 11 by the open triangle at Cs = 10~ uM.

The low- and high-charge trajectories of the experimental
K series are qualitatively similar. Both trajectories approach
the fcc crystal with decreasing A (decreasing salt), however,
showing no reentrant transition. The LZ trajectory of series K
starts very close to the freezing line predicted by Hamaguchi
et al.>> The first data point corresponds to the lowest salt con-
centration (Csg = 70 uM) for which the sample was observed
to become fluid. For lower salt concentrations, the K-series
samples were found to be crystalline with an fcc structure.

IV. CONCLUSIONS

Freezing lines of charge-stabilized colloidal systems de-
scribed by a Yukawa-type repulsive pair potential have been
constructed, based on the accurate Rogers-Young integral
equation scheme for S(g) in conjunction with the empirical
Hansen-Verlet rule for the onset of freezing.

To facilitate the comparison with experiments where the
phase behavior of charge stabilized systems is of interest,

J. Chem. Phys. 136, 024507 (2012)

freezing lines involving experimentally controllable parame-
ters were discussed in the Cy—¢, Z—¢, and Z—C phase spaces.
These two-parameter freezing-line diagrams, where a respec-
tive third parameter is varied, should be very useful for the
systematic planning of experiments, and for understanding
the role played by different parameters in defining the solid
or fluid phase states of charged colloids. For this purpose,
the RY-HV based freezing lines have been constructed over
a vast parameter range, not attainable by exceedingly more
time consuming computer simulations.

On accounting for the fact that from an experimental
viewpoint practically indistinguishable S(g)s are obtained for
in general two distinctly different effective charge values,
namely, the low-charge and high-charge branch values, re-
spectively, both branches of the two-parameter freezing lines
have been discussed to obtain a complete description.

A possible way to distinguish whether a particular exper-
imental Yukawa-type system assumes its low- or high-charge
Z value, is to determine the lattice type of the resulting crys-
tal: The majority of low-charge systems will freeze into a
bece solid, but freezing into an fcc solid (according to the RY-
HYV scheme) can be also observed for high salinities. In con-
trast, in high-charge branch systems where values A > 6.9
are always found, freezing takes place only into a fcc solid.
An additional criterion which can be used to identify the ac-
tual, experimentally occurring effective charge, provided the
low-charge and high-charge values are largely different, are
charge condensation/regulation considerations which give up-
per bounds to the experimentally realizable effective charge.

The universal T—A freezing line traced out by our RY-
HV results for S(g,,) = 3.1, is in good agreement with ear-
lier simulation-based freezing and melting line predictions by
various groups,!®1%:20:2223 thereby extending this line to a
largely extended range of A values. We have checked that the
universal freezing line is quite insensitive to small changes in
the HV freezing value. Here, we re-emphasize that only sys-
tems with hard-core interactions masked by the electric re-
pulsion have been considered, representative for most charge-
stabilized systems.

The RY-HV based two-parametric space freezing lines
have been used to analyze the system trajectories of two silica
in DMF systems, one at ¢ =~ 0.077 (series H) and the other
at ¢ = 0.14 (series K). Both the systems were studied using
SAXS as functions of added monovalent salt. We have shown
experimentally, and in accord with the phase diagram calcula-
tions by Hamaguchi et al.>* and our RY-HV based Z-C; phase
diagram in Fig. 11, that a re-entrant fluid-solid-fluid transition
takes place for the series H systems at constant colloid con-
centration, when the salt concentration is increased.

In the work by Royall et al.,’ a similar reentrant fluid —
bcec—fluid transition has been observed experimentally for
charged PMMA spheres in a solvent mixture as the volume
fraction was increased. The unusual part in this sequence is
the reentrant melting at a larger ¢. Royall ef al. explain this
sequence essentially by the strong ¢ dependence of the ef-
fective colloid charge which, in the considered concentra-
tion range, decreases with an increasing ¢. For the silica in
DMEF system discussed in Fig. 11, a fluid—bcc-reentrant fluid
transition sequence is observed instead for increasing salt
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concentration at constant ¢. Here, the unusual part in the
sequence is the freezing upon increasing salt concentration,
in apparent conflict with the frequently observed behavior in
charged colloidal suspensions where the systems stays fluid
when the salt concentration Cy is increased (at fixed ¢). As
discussed before, the increase of Z with increasing salt con-
centration in our silica in DMF system (via a weakening coun-
terion condensation) is sufficiently strong to induce crystal-
lization. Thus, in both the reentrant transition scenarios, the
unusual parts are explained by the respective parameter de-
pendence of the effective charge: a falling Z(¢) in the case
of,% and a rising Z(Cy) for silica in DMF.

In place of the HV freezing criterion, one could have
used the dynamic freezing criterion by Lowen et al.,’ on
the ratio of long-time to short-time self-diffusion coeffi-
cients, D;/Ds = 0.1, at freezing (LPS criterion, for short),
to map out the fluid—solid freezing line, as done for dusty
plasmas in the simulation work by Vaulina and Khrapak.’*
However, different from dusty plasmas, the non-Newtonian
and over-damped dynamics of colloids is subject to long-
ranged hydrodynamics interactions. While fast and accurate
analytic methods exist for calculating Dg in the presence
of hydrodynamic interactions,*' a precise calculation of the
long-time coefficient, Dy, is still very demanding and time-
consuming up to the present day. For colloids, it would thus
be highly uneconomical to derive a freezing line from calcu-
lations of D; in conjunction with the LPS criterion. More-
over, as shown by one of the present authors*> for the im-
portant case of colloidal (low-salinity) systems in the weak
screening regime, there exists a one-to-one mapping between
the static HV and the dynamic LPS criterion of colloidal
freezing.

Finally, we note that the behavior and the physical inter-
pretation of the colloid-colloid pair energy in Yukawa sphere

systems in relation to the pair structure and the 7—A freezing
line will be discussed in the forthcoming paper II.
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