JUGENE unravels Structures in Phase Change Materials

Ge(In, Ag, Sn)

Group 1

Group 2

he melting temperature.

he melting temperature.

ating (of the order of
the glass transition but
ag point returns the bit
crystalline form. The
entified by monitoring the
ical properties.

The transition between the two phases

is not only extremely rapid (some tens

Amorphous bits are formed by quench-

of nanoseconds), but it is reversible.

juirements of PC materithe rapid crystallization, relatively few materials. The years now has been see or four elements, contain germanium (Ge), and tellurium (Te), and as "GST alloys" (Fig. 1a). Iine connecting GeTe up 1) are common PC cularly Ge₂Sb₂Te₅, which

the GeTe end, which are favoured in BD applications. Also shown in Figure 1 are alloys near Sb (70%) and Te (30%) (Group 2). With small amounts of silver (Ag) and indium (In), "AIST" alloys are in widespread use in DVD-RW devices. Although both alloy families contain antimony and tellurium and appear to have much in common, the phase change mechanisms are very different. In GST materials, the amorphous bit crystallizes via nucleation, i.e. small crystallites formed in the interior grow rapidly until they cover the whole bit (Fig. 1b). The phase change in AIST alloys proceeds from the outside of the bit, where it adjoins the crystalline surroundings, towards its interior (Fig. 1c).

is used in DVD-RAM, and alloys near

Materials in both groups have superior rewrite speeds and are stable at room temperature for long periods, indispensable characteristics of PC memories.

Applications

Applications

Sb₇Te, Sb_{vo}Te_{ao} b Figure 1: Phase diagram of PC materials and crystallization patterns. (a) The most commonly used materials for optical recording are in Groups 1 and 2, (b) Nucleationdominated growth recrystallization (as in GST), (c) Growth-dominated recrystallization (as in AIST).

GeT(

ation of 460 atoms and 52 <mark>vacancies in (a) crystalline GST and (b) amorphous GST. Red: Ge, blue: Sb, yellow: Te.</mark> as light blue isosurfaces. A single large cavity is one of numerous cavities in a-GST.

12 Autumn 2011 • Vol. 9 No. 2 • inSiDE Autumn 2011 • Vol. 9 No. 2 • inSiDE

It has been possible in both cases to develop models that explain the rapid phase change.

The calculations involved density functional simulations of the cooling process from a high-temperature liquid down to room temperature, and the number of atoms in the unit cell (460 in GST, 640 in AIST) and the total simulation times (hundreds

of picoseconds in both cases) make them by far the most extensive "Car-Parrinello" [1] studies of such materials. In the case of

Ge₂Sb₂Te₅, we show in Fig. 2

(a) and amorphous
(b) structures. Although
the latter looks very
messy on first sight,
closer inspection shows
to be determined.

Until recently, however, there was little

understanding of the crucial - and rate-

limiting - crystallization process and no

rapidity. The combination of extensive

JUGENE with new experimental data

powerful x-ray source, has enabled

the structures of the amorphous

phases of both Ge, Sb, Te,

and x-ray spectra from the Japanese

synchrotron SPring-8, the world's most

convincing explanation for its astonishing

simulations on the Jülich supercomputer

Figure 3: Model of crystallization of an AIST alloy. Upper left: a laser pulse (hv arrow) causes motion of the central antimony atom (left), which then exchanges its bonds to two neighbours. Upper right: The green vector sum of the three short red bonds changes.

Below: A sequence of such processes leads from the amorphous (left) to the crystalline form (right).

phous and crystalline phases contain the (crystallization), without requiring large same structural units, "ABAB" rings. atomic motions or the empty regions These four-membered rings contain two that were present in GST, but are absent germanium or antimony atoms (A) and here. The antimony atoms, stimulated two tellurium atoms (B) and can rearrange by the laser pulse, have simply exchanged in the available empty space without the strengths of the bonds to two breaking many atomic bonds. This obneighbours. servation is consistent with the very rapid crystallization of the amorphous

of AIST, it was

determine a

structure of the amorphous phase that

reproduced the x-ray scattering data of

In conjunction with the known structure

of the crystalline phase, this has again

allowed us to propose a model for the

crystallization process (Fig. 3). In this

"bond exchange model", the local environ-

ment in the amorphous bit is changed

by small movements of an antimony

exchange of a short and a long bond.

A sequence or avalanche of many such

steps results in reorientation

atom (see Fig. 3, above) that result in the

our Japanese colleagues [3].

phase, but the details

process remain to

clarified.

In the case

possible to

The deeper theoretical understanding of the processes involved in writing and erasing memory devices should aid the development of phase change storage media with longer life, larger capacity, and/or shorter access times. Naturally it would be highly desirable to simulate the actual crystallization process and see whether these models <mark>are</mark> more than just plausible explanations. The time scale involved makes such calculations extremely challenging, but we are performing them for GST at the moment and a<mark>re very optimistic about the prospects.</mark>

References

- (1) Car, R., Parrinello, M.
 Unified approach for molecular dynamics and density functional theory, Phys. Rev. Lett. 55, 2471 (1985)
- [2] Akola, J., Jones, R. O., Kohara, S., Kimura, S., Kobayashi, K., Takata, M., Matsunaga, T., Kojima, R., Yamada, N. Experimentally constrained density-functional calculations of the amorphous structure of the prototypical phase-change material Ge₂Sb₂Te₅, Phys. Rev. B 80, O2O2O1(R) (2OO9)
- [3] Matsunaga, T., Akola, J., Kohara, S., Honma, T., Kobayashi, K., Ikenaga, E., Jones, R. O., Yamada, N., Takata, M., Kojima, R. From local structure to nanosecond

From local structure to nanosecond recrystallization dynamics in AglnSbTe phase change materials, Nature Materials 10, 129 (2011)

Application

- Jaakko Akola¹
- Robert O. Jones²
- ¹ Tampere University of Technology, Finland
- ² Forschungszentrum Jülich, PGI-1, Jülich

Autumn 2011 • Vol. 9 No. 2 • inSiDE Autumn 2011 • Vol. 9 No. 2 • inSiDE