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Abstract  

The oxidation behavior of the bond coat is an important factor determining the lifetime of thermal barrier 

coatings (TBC) in the advanced gas turbine components. In the present work, the effect of various testing 

parameters, such as hot/cold dwell time, heating/cooling rate, atmosphere composition on the bondcoat oxidation 

and associated TBC lifetime has been investigated. The range of coating systems included Electron Beam - 

Physical Vapor Deposited (EB-PVD) and Air Plasma Sprayed (APS) TBC´s with MCrAlY (M = Ni, Co) and 

NiPtAl- bondcoats of various compositions. 

The effect of the testing parameters strongly depended on the type and properties of the studied system. The 

lifetime of EB-PVD TBC systems with conventional MCrAlY and NiPtAl bondcoats forming uniform, flat 

alumina scales was found to be limited by critical scale thickness, upon which a rapid crack propagation at the 

scale/bondcoat interface results in macroscopic failure. The lifetime of such systems was found to be affected by 

factors, which influence the scale growth rate and adherence (in particular by oxygen partial pressure (pO2) and 

water vapor content in the test gas in the case of MCrAlY), whereas the temperature cyclic frequency showed no 

significant effect. NiPtAl bondcoats showed a superior behavior than the conventional MCrAlY-bondcoats due 

to slower scale growth rate and better scale adherence. For EB-PVD TBC systems with Zr-doped MCrAlY-

bondcoats the lifetime is mainly determined by the crack growth rate in the inhomogeneous inwardly growing 

oxide scales, whereas the lifetime is not dependent on the pO2 but rather on the cyclic frequency. 

For APS TBC systems the bondcoat oxidation is only one of several factors determining the ceramic topcoat 

lifetime. Therefore the oxide scale adherence is of less importance for lifetime of APS TBCs as compared to EB-

PVD TBCs. For the former systems, the cracks initiated at the convex asperities of the rough oxide scale / 

bondcoat interface need to propagate through the TBC to cause macroscopic failure. The rate of crack 

propagation in the TBC is a critical step, which depends substantially on its microstructural properties. In 

addition to the TBC-porosity the bondcoat roughness profile is shown to be an important parameter, which to a 

large extent determines the rate of crack initiation and propagation. Higher Co-content in the bondcoat was 

found to stabilize its microstructure thereby lowering the CTE-mismatch stress in the ceramic topcoat thus 

extending the TBC-lifetime. The major drawback of high Co-contents was that such bondcoats are prone to form 

fast-growing spinel oxides. This effect, which was especially pronounced on rough surfaces could be suppressed 

by only a minor (few microns) enrichment of Al on the bondcoat surface prior to TBC-deposition produced by 

heat-treatment in high vacuum. With respect to the effects of experimental parameters it was found that contrary 

to EB-PVD TBC systems a higher cycle frequency leads to shortening of the APS TBC lifetime, whereas higher 

water vapor content had no significant influence. 

The results of the present work indicate that the lifetime of the TBC systems with MCrAlY bondcoats would be 

shorter than that required for long-term operation (25 000 hours) at the envisaged operating temperature of 

1000°C. Under such circumstances using NiPtAl-type of bondcoats or perhaps Pt-modified MCrAlY-bondcoats 

would be an option to obtain the necessary lifetime extension, which can even justify the high cost of metallic Pt.
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Kurzfassung  

Das Oxidationsverhalten von Haftvermittlerschichten ist ein wichtiger Faktor, der die Lebensdauer der 

Wärmedämmschichten auf Komponenten in modernen Gasturbinen bestimmt. In der vorliegenden Arbeit 

wurden die Einflüsse von Versuchsparametern, wie Hoch- und Raumtemperaturhaltezeit, Aufheiz- und 

Abkühlrate, Zusammensetzung der Atmosphäre, auf die Oxidation der Haftvermittlerschichten und die damit 

verbundene Lebensdauer der Wärmedämmschichten untersucht. Eine Reihe von Schichtsystemen wurde 

getestet, u.a. Electron Beam - Physical Vapor Deposited (EB-PVD) and Air Plasma Sprayed (APS) 

Wärmedämmschichten (WDS) mit MCrAlY (M = Ni, Co) und NiPtAl Haftvermittlerschichten unterschiedlicher 

Zusammensetzungen. 

Der Einfluss der Versuchsparameter hängt stark vom Typ und den Eigenschaften der untersuchten 

Schichtsysteme ab. Die Lebensdauer der EB-PVD WDS Systeme mit konventionellen MCrAlY und NiPtAl 

Haftvermittlerschichten, die während der Oxidation eine homogene, flache Al-Oxidschicht bilden, ist durch eine 

kritische Oxidschichtdicke begrenzt. Nach dem Erreichen der kritischen Oxidschichtdicke erfolgt eine schnelle 

Rissbildung bzw. ausbreitung an der Grenzfläche Oxidschicht/Haftvermittlerschicht, die zu einem 

makroskopischen Versagen der Wärmedämmschicht führt. Als Folge von diesem Versagensmechanismus wird 

die Lebensdauer von den obengenannten Systemen sehr stark von Faktoren beeinflusst, die die 

Oxidschichtwachstumsrate und/oder Oxidschichthaftung bestimmen, insbesondere vom Sauerstoffpartialdruck in 

der Versuchsatmosphäre sowie dem Wasserdampfgehalt, wobei das thermische Zyklieren von Proben keinen 

wesentlichen Einfluss hat. Durch eine niedrigere Wachstumsrate sowie eine bessere Oxidschichthaftung zeigten 

sich die NiPtAl Haftvermittlerschichten den konventionellen MCrAlY Schichten überlegen. Die Lebensdauer 

von EB-PVD Wärmedämmschichten mit Zr-dotierten MCrAlY-Haftvermittlerschichten ist hauptsächlich durch 

die Geschwindigkeit der Rissausbreitung in inhomogenen, stark nach innen wachsenden Oxidschichten bestimmt 

und damit nicht durch den Sauerstoffpartialdruck, sondern durch das thermische Zyklieren beeinflusst. 

Für die APS Wärmedämmschichten ist die Oxidation der Haftvermittlerschicht nur eine von mehreren 

lebensdauerbestimmenden Einflussgrößen. Deswegen ist die Oxidschichthaftung für die Lebensdauer der APS 

WDS,  im Vergleich zu den EB-PVD WDS weniger bedeutend. In den APS WDS Systemen müssen sich die 

Risse, die sich in den konvexen Bereichen der rauen Haftvermittlerschichtoberflächen bilden, durch die 

keramische Wärmedämmschicht ausbreiten, um zu einem makroskopischen Versagen zu führen. Die 

Rissausbreitungsrate in der WDS ist ein kritischer Schritt, der signifikant von den mikrostrukturellen 

Eigenschaften der WDS abhängt. Zusätzlich zur WDS-Porosität scheint das Rauhigkeitsprofil der 

Haftvermittlerschicht ein wichtiger Parameter zu sein, das die Rissbildung bzw. –ausbreitung bestimmt. 

Außerdem wurde festgestellt, dass der höhere Co-Gehalt in der Haftvermittlerschicht deren Gefüge stabilisiert 

und damit die Abkühlspannungen durch die Unterschiede in thermischen Ausdehnungskoeffizienten zwischen 

der Oxidschicht bzw. WDS und Metallkomponenten reduziert, was zu einer Lebensdauerverlängerung der WDS 

führt. Der Nachteil der Co-reichen Haftvermittlerschichten ist, dass sie zur Bildung von schnellwachsenden 

Oxidschichten (Ni/Co-Spinell) neigen. Dieser negative Effekt, der speziell auf den rauen Haftvermittlerschichten 

beobachtet wurde, konnte mit einer geringen (wenige μm) Oberflächenanreicherung von Al durch die 

Wärmebehandlung in Hochvakuum vor dem Spritzen der APS WDS unterdrückt werden. Im Bezug auf die 
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experimentellen Parameter, wurde im Gegensatz zu EB-PVD WDS beobachtet, dass das thermische Zyklieren 

der APS-WDS zu einer Lebensdauerverkürzung führt und der Wasserdampfgehalt in der Testatmosphäre keinen 

großen Einfluss auf die Lebensdauer der APS WDS hat.  

Die Ergebnisse der vorliegenden Arbeit deuten darauf hin, dass die Lebensdauer der EB-PVD sowie APS WDS 

Systeme mit  MCrAlY Haftvermittlerschichten bei den zu erwarteten Betriebstemperaturen von 1000°C kürzer 

sein wird, als die von der Industrie gewünschte Lebensdauer von 25 000 Stunden. Unter diesen Bedingungen 

wird die Anwendung von NiPtAl oder überplatinierten MCrAlY Haftvermittlerschichten eine Option sein, um 

die erforderliche Lebensdauerverlängerung der WDS zu erzielen, die sogar die relativ hohen Kosten des Pt-

Metalls rechtfertigen könnte. 
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1. Introduction 

1.1 Energy demand and requirements of environmental protection 

Increasing of world population and world economy results in a growing energy consumption. The 

global primary energy demand is projected to increase by 1.5% per year between 2007 and 2030 [1]. 

Fossil fuel fired power plants will in the near future provide a large fraction of the total electricity 

supplies, which will still account for about 70% of electricity generated worldwide in 2030 (see Fig 

1.1). The conversion of coal, oil and natural gas into electrical power is going to increase to 

2.2×1014kWh in 2030, which is around 75% more compared to 2007. Unfortunately, environment 

pollution and CO2 emissions are expected to increase with increasing use of fossil fuel. Since power 

plants account for one third of the total CO2 emissions [2], improvements in their efficiency can 

greatly contribute to the reduction of overall CO2 emissions and also delay the time to exhaustion of 

conventional fossil fuels.  

 

 

 

 

 

 

 

 

 
                                  Fig. 1.1 Expected growth in electricity generation in 109 kWh worldwide [3] 

                                     

Natural gas mainly consisting of methane is available from underground gas fields, or sometimes as a 

byproduct of oil drilling. Natural gas burns cleanly, which basically eliminates the emissions of 

sulphur oxides and particulates, two of the most serious atmospheric pollutants. Easy transportation 

using pipelines is another advantage of natural gas as a fuel versus coal. In addition, from all fossil 

fuels natural gas has the lowest CO2 output per kWh produced in the operating power plants [3]. 

According to the data from the International Energy Agency (IEA), the use of natural gas in the power 

generation sector is expected to almost triple from 2002 to 2030 [1]. Considering the economic and 

environmental factors, high-efficiency turbines using natural gas appear to show a number of 

advantages in the power generation sector. Gas turbines can be particularly efficient, up to 60%, when 

waste heat from the turbine is recovered in a steam generator to drive a conventional steam turbine in a 

combined cycle configuration. As a result, the world natural gas consumption is projected to more 

than double over the next three decades, rising from 23% to 28% of world total primary energy 
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demand by 2030 and surpassing coal as the world’s number two energy source and potentially 

overtaking oil's share in many large industrialized economies [1].  

 

To simultaneously satisfy the increasing energy demand and greenhouse gases reduction, CO2 capture 

technologies in recent years for fossil fuel firing power plants are being developed, as shown in Fig 

1.2. However, the efficiency of gas turbines operating in such a power plant configuration will be 

decreased due to energy consumption by the CO2-capture processes. Higher turbine operating 

temperatures could be one of strategies to compensate the efficiency penalties of CO2-capture. 

Integrated Gasification Combined Cycle (IGCC) power plants with pre-combustion CO2-separation 

shown in Fig 1.2, are considered to be implemented on an industrial scale in the near future [2]. In 

these advanced power plants a high-efficiency gas turbine will be operating under the conditions of 

increased water vapor content compared to combustion gas produced by burning natural gas.  

 

In addition gas turbines are often used to compensate daily peaks in electricity consumption as well as 

fluctuations in power output from renewable energy sources (wind, solar etc). Therefore, a new 

generation of gas turbines should be able to operate under such conditions: higher operating 

temperatures, more H2O-rich atmosphere and more frequent start-ups. This imposes increased 

requirements on the gas turbine materials, as will be discussed in the next chapter.  

 

 

 

 

 

 

 

 
 

                                                Fig. 1.2 Schematics for CO2 Capture Technologies [2] 

1.2 Gas turbine materials 

A typical gas turbine used in a modern power plant is showed in Fig 1.3. Gas turbines operate 

thermodynamically according to the Brayton cycle, whereby the fuel gas mixed with air undergoes 

three main processes: compression, combustion and expansion. Air compressed to high-pressure in a 

multi-stage compressor enters the combustion chamber. Fuel and high-pressure air are combusted to 

form high-pressure exhaust gas, which is then released into the expansion stage (turbine). Through a 

series of rotating blades on a shaft in the turbine the exhaust gas drives an electrical generator. The 

temperature of the exhaust gas entering the turbine (turbine inlet temperature) can be as high as 
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1200°C~1400°C. Finally, the hot exhaust gas leaving the gas-turbine can be recovered to steam 

production to power a conventional steam turbine, thereby improving the efficiency of the power 

plant. 

 

The elevated turbine inlet temperature directly affects the materials in the hottest sections of the gas-

turbine, i.e. combustion chamber, vanes and blades, which should fulfill a number of requirements: 

high creep strength, suitable ductility at low temperatures, and high oxidation (corrosion) resistance. 

Most of these requirements are fulfilled nowadays by the so-called superalloys. The developments of 

new superalloy compositions and processing routes in the recent years allowed an increase of the 

turbine inlet temperature (Fig 1.4), thereby substantively contributing to the increase of the net 

efficiency of gas-turbines.  

 

Superalloys are nickel-, iron-nickel-, and cobalt-base alloys generally used at temperatures above 

800°C. From Fig 1.4 it can be seen that modern superalloys operate at temperatures which are 

relatively near to the alloy melting temperature. Many alloy compositions have been developed over 

the past decades [4]. The superalloy creep properties at high temperature are improved by the 

reduction of grain boundaries as a source of weakness for the mechanical properties. This resulted in 

development of directionally-solidified as well as single-crystal superalloys. The advanced single-

crystal alloys now allow operating temperatures up to about 1100°C compared to 750°C for the first 

wrought superalloys developed in the 1940s [5].  

 

A Ni-base superalloy typically consists mainly of a �-Ni matrix and �´-Ni3Al strengthening 

precipitates. In the nickel-base alloys, chromium, as a strong � phase and carbide stabilizer, is 

incompatible with the very high creep resistance alloys which contain high �� fraction. Excess Cr 

content also impairs the alloy microstructure stability by promoting formation of brittle TCP phases, 

such as �-(Co, Cr) intermetallic. However, the high Cr content in superalloy is preferred to obtain high 

Fig. 1.3  Gas turbine - SIEMENS SGT5-8000H (340MW)  

Compressor 
Combustion chamber 

Turbine 
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hot corrosion resistance in harsh operating environments, whereas a high aluminum content of the 

alloys increased and chromium content decreased in order to reduce the negative Cr-effect on the 

creep properties of superalloys, especially at high temperatures (greater or 1000°C). Therefore, an 

optimum composition of the superalloys should be considered to maintain a balance of various 

properties. Newer generations of superalloys contain higher amounts of Al (5-6 wt%) and lower 

amounts of Cr (6-8 wt%) compared to alloys of earlier generations, which typically contained 3-4% Al 

and 12-16% Cr. This change in the alloy chemistry allowed an increase in the volume fraction of �� 

precipitates and consequently improved the alloy creep strength. 

Fig. 1.4 Alloys and coatings development for gas turbine blades [6] 

 

In modern gas turbines the turbine inlet temperatures increased to values exceeding the capabilities of 

superalloys with respect to mechanical strength and environmental stability. Therefore a superalloy 

component in the hottest sections of a gas turbine has to be coated.  

Aluminum rich thermally sprayed MCrAlY (M=Ni, Co) and/or aluminized coatings are applied on the 

surface of superalloys due to their ability to form a protective Al-oxide surface layer during exposure. 

Furthermore, the advanced gas turbine components are nowadays internally cooled, which reduces 

significantly the surface temperatures. The cooling efficiency can be greatly improved by using a 

ceramic thermal barrier coating (TBC) (Fig 1.4). Details of TBC composition, properties, 

manufacturing and operation are discussed in the next chapter. 
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2 TBC Systems 

Thermal barrier coating (TBC) systems [7-10] consist of a ceramic top coat, most commonly yttria-

stablized zirconia (YSZ), and an underlaying metallic bondcoat (BC) which are applied onto a 

superalloy component in the gas turbine. The ceramic top coat should have a low thermal 

conductivity, thereby reducing the heat transfer from hot gases (over 1200°C) to the structural 

superalloy component, a coefficient of thermal expansion (CTE) similar to that of the superalloy and a 

high strain tolerance. The metallic bond coating located between the ceramic layer and superalloy 

should have a sufficiently high aluminum content to form a protective thermally grown oxide (TGO) 

mainly consisting of �-Al2O3, and a CTE similar to the TBC and superalloy as well as good chemical 

compatibility with the base material (minor interdiffusion, possibly no brittle phase formation). Fig 2.1 

shows macro photos of a TBC coated, internally cooled turbine blade and a schematic curve of the 

temperature distribution across the TBC-system.  

2.1 Ceramic Top coat 

The ceramic top coat material directly exposed to the high temperature combustion gases should 

possess a high melting temperature, a high thermal reflectivity, good oxidation and corrosion 

resistance, low thermal conductivity, high coefficient of thermal expansion, and chemical stability. 

Based on the above requirements, ZrO2 ceramics stabilized with 6-8% wt% Y2O3 are commonly 

applied for TBC top coats. Under equilibrium conditions, yttria at this level enters the zirconia solid 

solution and stabilizes its tetragonal crystal structure (t-YSZ) above about 1050°C. Numerous studies 

[7, 11] have shown that 6-8% wt.% Y2O3-stablized ZrO2 is very suitable for TBC applications due to 

its average coefficient of thermal expansion (CTE, 9-11.5×10-6K-1) being close to that of the 

superalloys (12-14×10-6K-1). It also possesses a low thermal conductivity at elevated temperature (e.g., 

~2.3 W·m-1K-1 at 1000°C for compact polycrystalline ceramic) which is more than an order of 

magnitude below those of Ni-base superalloys and many other ceramics. 
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Fig 2.1 Cross-section of a TBC-coated turbine blade and schematic of temperature 
gradient in TBC cross-section 
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Up to now, alternative ceramic materials for the advanced next generation ceramic top coatings have 

been searched in numerous investigations. A number of zirconates (e.g. La2Zr2O7, Gd2Zr2O7, SrZrO3) 

[12-13], Hafnates and Cenates (e.g. La2Hf2O7, La2Ce2O7) [14-15] as well as rare earth base compounds 

(e.g. LaYbO3) [15] are of special interest. Some of them exhibit only a single phase from room 

temperature up to the melting temperature, which is higher than 2200°C [15]. However, no single 

material was found, which satisfies all the above requirements better than YSZ. Some materials with 

high temperature stability and lower thermal conductivity were developed, however, they have a lower 

coefficient of thermal expansion and lower fracture toughness which often leads to a reduced TBC 

lifetime under thermal cycling conditions. Therefore, ZrO2 ceramics stabilized with 6-8% wt% Y2O3 

are still applied in most state-of-the-art TBCs due to high strength, fracture toughness, and chemical 

stability as well as a relatively low Young’s modulus. 

 

Processing technologies to deposit ceramic topcoats [16-17] include Air Plasma Spraying (APS) [18-

19] and Electron-Beam Physical Vapor Deposition (EB-PVD) [20-21]. With the EB-PVD process, the 

coating is obtained by condensation of a vapor on the substrate. The vapor can be produced by heating 

the anode material through a focused electron beam under high vacuum. The EB-PVD processing has 

already shown large scale industrial application for the TBC systems due to a high deposition rate 

(several micrometers per minute) and a high strain tolerance as well as good surface finish of the 

coating. However, EB-PVD is a line-of-sight deposition process, thereby it cannot be used to coat the 

inner surface of complex geometries. 

 

The columnar microstructure is a specific characteristic of EB-PVD TBC’s, which clearly differs from 

that produced by APS process (Fig 2.2). The inter-columnar spacing significantly contributes to a high 

level of strain compliance of EB-PVD TBC’s. In contrast, the APS process is based on melting and 

accelerating YSZ powder in a plasma jet, which is generated by ionization of a gas such as Ar. The 

molten particles are directed at high velocity onto the substrate. Upon impact with the substrate, the 

molten particles flatten and solidify very rapidly. Therefore, the adhesion between the molten particles 

and substrate is primarily mechanical. This sprayed coating will typically include voids (10-20% 

porosity), as shown in Fig 2.2b, which reduce the thermal conductivity and increase the strain-

Fig 2.2 Microstructures of yttria stabilized zirconia TBC’s deposited by a) EB-PVD, b) APS 
(SEM cross-sections) 

a)   50μm   50μmb)
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tolerance. EB-PVD deposited coatings are comparatively smoother than APS coatings, which could 

increase the erosion resistance. Adhesion of EB-PVD coatings to the metallic bondcoat is generally 

much higher (around 400MPa) than that of APS coatings, which only is about 20-40MPa [22]. 

However, an advantage of APS is the wide range of processing temperatures, which enables use of 

materials and compounds with different melting characteristic, as well as much lower process costs 

compared to EB-PVD. 

 

The YSZ microstructure has a large influence on the coefficient of thermal conductivity of the coating 

[23], whereby the defects resulting from APS processing such as cracks and pores typically reduce it 

compared to the comparatively dense YSZ produced by EB-PVD. The thermal conductivities of EB-

PVD YSZ are in the order of 1.5-1.9 W·m-1K-1, which is about a factor of two larger than the 0.8-

1.1W·m-1K-1 range found for APS YSZ coatings [24]. The columnar microstructure of the EB-PVD 

YSZ top coat allows an increased phonon and photon penetration compared to the APS top coat 

containing defects such as micro-cracks and pores parallel to the coating surface. 

2.2 Metallic Bond coats 

2.2.1 General Remarks 

If the Al concentration in a metallic high temperature alloy is below the critical content necessary to 

form a continuous protective alumina scale, fast growing Ni and Cr-rich oxide scales form on the 

surface of the alloy (Fig 2.3a and b). This is a typical situation of an uncoated superalloy, whereby 

spallation of the non-protective oxides scales leads to fast metal consumption (Fig 2.3c). The TBC 

directly (without bondcoat) deposited on a superalloy would result in severe oxidation of the base 

material, which is typically followed by rapid spallation of the ceramic topcoat [25]. It should be 

mentioned that, due to the high oxygen permeability of YSZ, the ceramic topcoat cannot prevent or 

reduce the substrate oxidation.  

 

To improve the oxidation resistance of the TBC coated superalloy, a metallic bond coat is deposited 

between ceramic top coat and superalloy component. The bondcoat oxidation resistance, chemical 

stability and mechanical properties influence the lifetime of the whole TBC system. Therefore, a 

number of requirements for the bond coat have to be fulfilled, such as formation of a slow growing 

and adherent TGO, a small CTE difference between TBC and superalloy, and chemical 

compatibilitywith the superalloy i.e. possibly a small interdiffusion rate and no brittle phase formation. 

In addition to the above mentioned properties the bondcoat provides in APS-TBC systems a rough 

surface necessary for a good mechanical keying of the TBC. 
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The bond coats provide oxidation protection to the underlying superalloy by formation of a protective 

alumina scale [26-27]. In order to obtain formation of a continuous layer of �-Al2O3 during longer 

oxidation times a large aluminum reservoir in the bondcoat is required. For this purpose, two types of 

bond coats for TBC systems are presently commonly applied to a superalloy component: MCrAlY 

(M=Ni, Co) [28-30] and diffusion aluminide [31-33] coatings.  

2.2.2 MCrAlY coatings 

The MCrAlY coatings developed until now can be classified into NiCrAlY, CoCrAlY and 

NiCoCrAlY [34] which have differences in high temperature corrosion and oxidation resistance. The       

MCrAlY bond coat composition affects the TGO composition, growth rate, adherence and failure 

mechanisms. Therefore, optimized NiCoCrAlY bond coat compositions may be a useful approach to 

extend the TBC systems lifetime. CoCrAlY coatings are claimed to have better hot corrosion 

resistance and poorer oxidation resistance than NiCrAlY coatings. The main composition in the 

coatings can affect their thermal stability [35] and oxidation resistance. The NiCoCrAlY or 

CoNiCrAlY coatings provide a balance of oxidation and hot corrosion resistance. Figure 2.4 shows 

schematically corrosion and oxidation resistance properties of different kinds of MCrAlY bond coats. 

 

High Cr and Al contents in MCrAlY bond coats are beneficial from the viewpoint of corrosion and 

oxidation resistance [36], however, a negative effect is observed simultaneously on the coating 

NiCo2O4 

CrAl2O4 

Al2O3  TiO2 

1�m CMSX-4 

b) 

IN738 alloy 

Cr2O3 + TiO2 

Al2O3  

TiO2 

2�m 

a) 

600�mIN738T
B

C
B

C

B
C

T
B

C

Original surface

NiCoCrAlY BC 

c) 

Fig. 2.3 Cross-sections of Ni-base superalloys a) IN738 and b) CMSX-4 after exposure in air for 24h 
at 1050°C; c) Cross-section of superalloy IN738 partially coated with TBC system with NiCoCrAlY 
bondcoat after oxidation for 2835h in air at 1050°C 
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                  Fig 2.4 Schematic comparison of oxidation and corrosion resistance for different bondcoats [37] 

 

ductility. Therefore, the Al and Cr contents in the bond coats should be optimized in order to balance a 

high fatigue resistance with a sufficiently high Al reservoir to form a continuous and compact �-Al2O3 

layer even after long term high temperature exposure. 

 

At high temperatures (above 1000°C) the NiCoCrAlY bond coats mainly consist of two phases [35]: 

�-Ni solid solution (with Co, Cr, Mo and Re et al) and �-NiAl intermetallic compound. During high 

temperature oxidation, Al is constantly consumed from the coating due to growth of the �-Al2O3 scale 

and because of interdiffusion with the superalloy substrate. This will induce a phase transformation 

from �-NiAl to �-Ni. With decreasing temperature, however, the MCrAlY coating microstructure is 

commonly more complex than the two phase � + � structure. For ternary NiCrAl coatings it was 

shown [38] that the � phase transforms at lower temperatures, e.g. 900°C, to �´ and �-Cr. 

 

Additions of rhenium, tantalum, and silicon to some MCrAlY coatings were found to affect the 

oxidation resistance and in particular the oxide scale adherence. Re promotes the presence of � and �-

Cr phases which can influence the thermo-mechanical fatigue resistance [39]. Ta was found to 

improve the yield strength and oxidation resistance of MCrAlY coatings [40].  

 

Additions of so-called reactive elements (e.g. Y, Hf, La, Ce, Zr) have a substantial influence on the 

oxidation resistance of MCrAlY coatings and in particular greatly improve the alumina scale 

adherence. The details of reactive element effect (REE) will be discussed in chapter 3.2.2. Additions 

of Ce [41] and Hf [7, 42] apparent to have a beneficial effect on the high temperature oxidation 

resistance and mechanical properties of MCrAlY coating.  

 

The MCrAlY coatings are manufactured by different processes such as electron-beam physical vapor 

deposition (EB-PVD) [43], low pressure plasma spraying (LPPS) [44], atmospheric plasma spraying 

(APS) [45], vacuum plasma spraying (VPS) [46] or high velocity oxy-fuel spraying (HVOF) [47]. The 
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EB-PVD process is able to produce comparable clean bondcoat compared to APS, however, the cost 

of bondcoat production by EB-PVD is higher than others industrial processing such as LPPS and 

HVOF, which were developed in recent decades. 

2.2.3 NiPtAl coatings 

Platinum-modified �-NiAl diffusion coatings are commonly applied to high-pressure turbine blades 

and nozzles in aero engines. Pt is applied by electroplating a 6~9 �m platinum layer onto the Ni-base 

superalloy prior to diffusion aluminizing via pack cementation, which is a modified chemical vapor 

deposition process. In the pack cementation process [48-49], the superalloy components (Fig 2.5) to be 

coated are embedded in a reactor filled with a powder mixture including an Al-rich alloy, an activator 

(halide salt), and an inert filler material such as Al2O3. Upon heating up the container, a volatile Al-

containing halide will be generated and transport to the component surface. A chemical reaction 

between halides and substrate alloy occurs, which the Al-containing halide will be decomposed on the 

substrate surface resulting a metal deposition followed by associated diffusion process within the 

substrate alloy. In case of Al-rich alloys, �-NiAl will be formed as a consequence of Al-deposition and 

diffusion into the substrate, which results the formation of an aluminide coating on the surface of the 

components. Depending on the processing conditions, Pt is included within the coating as single phase 

solid solution Ni(Pt)Al or two phases PtAl2 and solid solution Ni(Pt)Al. Pack cementation is a 

relatively cheap process which allowing to coat many components at the same time.   

 

There are two types of diffusion (platinum modified) aluminide coatings. The first type (high-aAl 

coating) is formed at T�1000°C by predominant inward diffusion of aluminum due to a sufficiently 

high aluminum activity. The second type (low-aAl coating) is formed by predominant outward 

diffusion of nickel from the substrate alloy to react with aluminum to form a �-NiAl coating.  

Pt exists as solute in the �-NiAl matrix or as a PtAl2 compound in the coating. The NiPtAl coatings are 

currently used as bond coats only for EB-PVD TBC’s, commonly deposited on commercial single-

crystal Ni-base superalloys such as CMSX-4 and Rene N5. The TBC systems with NiPtAl bondcoats 

Steel

H2

Powder�pack

Turbine�components

Fig 2.5 Schematic for pack cementation set up  
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were observed to have good performance in thermal cyclic testing at high temperature. The 

performance of �-NiPtAl and/or PtAl2 aluminide coatings is limited by oxide scale rumpling, which 

was proposed to be associated with thermally induced stress, with � to �� phase transformation [50-51] 

as well as martensitic transformation [52]. A new class of diffusion Pt-modified aluminide coatings 

based on the �-Ni + ��-Ni3Al system, has been recently developed by Gleeson [53]. The Pt-modified �-

Ni + ��-Ni3Al coatings showed excellent oxidation resistance and elimination of surface rumpling [32, 

54], however it was observed to have a faster oxide scale growth rate than �-NiPtAl coatings [55].  
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3 Oxidation of Bondcoats in TBC systems 

3.1 Oxidation of metals 

The reaction between a metal and oxygen may lead to formation of an oxide. This reaction can for the 

simplest case of oxide MO2 be expressed as: 

                                   22 MOOM ��                                                                 (3.1) 

For constant temperature and pressure, the driving force (the Gibbs free energy) for the above reaction 

(3.1) is given by: 

                                                    ��
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Where, 2pO is the oxygen partial pressure, aM and 
2MOa  are the activities of metal and oxide, 

respectively. 

 

For the case of thermodynamic equilibrium, G
 is equal to zero. The standard Gibbs free energy 

( 0G
 ) per mole of oxygen can be used to compare the stability of different oxides.  
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For unit metal and oxide activities, corresponding to pure metal and oxide, Equation 3.3 can be plotted 

in the form of a so-called Ellingham diagram, as shown in Fig 3.1. The values of the dissociation 

pressures for selected metal oxides can be obtained from Fig 3.1, which also includes the values of 

H2/H2O and CO/CO2 pressure ratios corresponding to a given 2pO . 
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(3.4) 

 

As can be observed from the Ellingham diagram, a lower (more negative) standard free-energy change 

for an oxide formation corresponds to a higher thermodynamic oxide stability and lower dissociation 

pressure.  

 

The standard Gibbs free energies (�G0) and oxide dissociation pressures derived from Fig 3.1 at 

1000°C are summarized in Table 3.1 for oxides of a number of common alloying elements in MCrAlY 

and NiAl coatings. It can be seen that Al has the highest O-affinity, which is a prerequisite for 

formation of selective Al oxidation.   
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For protective oxide scale formation, another factor, called the Pilling-Bedworth ratio (PBR) also has 

to be considered. The PBR is the ratio between the volume of oxide formed and the volume of metal 

consumed to form the oxide. Continuous oxide scales can be expected only on metals for which the 

PBR is larger than 1, e.g. PBR (Al)=1.28;  PBR (Cr)=2.07; and PBR (Fe)=2.10 [36]. For a number of 

metals such as W or Mo the PBR is much larger than two leading to high growth stresses in the 

respective oxide scale, which results in oxide scale spallation. 

 

Fig 3.1 Ellingham-Richardson diagram for standard free energy of 
oxide formation per mole of oxygen [36] 

 

 

 

 

 

If a continuous compact oxide layer forms on the alloy surface the reaction rate is commonly limited 

by diffusion of the reactants through the scale. The oxide scale growth by diffusion was first described 

by Wagner [36]. Thermodynamic equilibrium at the metal/oxide and oxide/gas interface is assumed to 

be established (as showed in Fig 3.2), which results in metal and oxygen activity gradients across the 

 NiO CoO Cr2O3 Al2O3 SiO2 

�G0 of oxide formation, 
kJ/mol O2, 1000°C, 105Pa 

-127 -144 -264 -403 -341 

Oxygen pressure for oxide 
dissociation, bar 

3.7E-11 1.5E-12 2.1E-22 8.3E-34 1.1E-28 

Table 3.1 �G0, pO2 for the oxide formation of pure elements in MCrAlY coatings, 1000°C, 105Pa 
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oxide scale in opposite directions. The activity gradients will induce metal and oxygen ions to migrate 

across the scale.  

                                  Fig 3.2 Schematic of oxide scale formation based on Wagner’s model [36] 

 

According to Wagner theory the scale growth obeys a parabolic rate law, i.e tKX ��2
, Where X is 

the oxide scale thickness, t is exposure time, and K is parabolic rate constant. For the cases of �-Al2O3 

formation on MCrAlY and NiPtAl coatings, the growth of protective �-Al2O3 often follows a sub-

parabolic time dependence: 
                                                                 ntKX �� '                                                                (3.5)   

where, n is constant (0.33�n�0.5).  

 

The reason for deviation from the parabolic law is that scale growth occurs not via lattice diffusion but 

rather over grain boundaries, whereas the grain boundary density was observed to decrease with 

increasing scale thickness due to the columnar oxide microstructure. This effect was demonstrated 

earlier for FeCrAl ODS alloys [56], NiAl-alloys [57]  and recently for FeCrAlY alloys [58].  

 

3.2 Formation of TGO in TBC systems 

A slow growing and adherent oxide scale forming on the bondcoats is a critical factor for the lifetime 

of TBC systems. From this viewpoint, Al2O3 and Cr2O3 as well as SiO2 are typically considered as 

protective oxide layers on high temperature materials. However, SiO2 is unstable at low pO2 and/or 

high pH2O atmospheres due to the formation of SiO and/or SiO(OH)2. In addition, a high Si-content in 

the coatings would result in deterioration of its mechanical properties, especially ductility. Since the 

turbine component operating temperatures are higher than 1000°C Al2O3 scales are preferred 

compared to Cr2O3 scales because the latter show faster growth rates and are prone to volatilization 

[59] at high pO2.  
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Although �-Al2O3 is a slowly growing oxide, alumina can also exist in other metastable crystal 

structures, which include cubic-spinel �-Al2O3, tetragonal 	-Al2O3, and monoclinic 
-Al2O3. These 

transient metastable aluminas grow significantly faster (see Fig 3.3) than �-Al2O3 due to rapid outward 

cation transport, which results in typical scale morphologies containing whiskers/needles. The 

transformation of metastable alumina into stable �-Al2O3 produces tensile stresses due to a 

considerable volume reduction, which can influence the durability of a TBC system. Recently, some 

researchers found that reactive elements such as Hf [60], can suppress the metastable alumina growth 

and that Pt [33] hinders the 
 to �-Al2O3 phase transformation.  

 

 

 

 

 

 

 

 

 
 

                         Fig 3.3 Arrhenius plot of parabolic rate constant (Kp) for the oxidation of pure NiAl [61] 

 

After the transient oxidation stages, the �-Al2O3 formation plays an important role in the long term 

integrity of TBC systems with MCrAlY and NiPtAl coatings. Failure of TBC has been associated with 

the formation, growth and failure of alumina, which is affected by the aluminum reservoir in the 

coating, bondcoat composition, operating temperature, atmospheres and cyclic conditions as well as 

interdiffusion with the superalloys.    

3.2.1 Effect of main coating composition on TGO formation 

For the NiCrAl alloys with different contents of Al and Cr, three types of oxidation behavior based on 

empirical data were found (Fig 3.4): 

(1) NiO external scale + Al2O3 /Cr2O3 sub-surface internal oxides for coating with low Al and Cr 

content 

(2) Cr2O3 external scale  + Al2O3 sub-surface internal oxides for coating with high Cr content 

(3) only Al2O3 scale, especially for coating with high Al content  

 

The Cr addition to Ni-Al alloys results in Cr-rich oxides formation during transient oxidation, which 

reduces the inward flux of oxygen thereby promoting exclusive Al2O3 formation. The effect of Cr on  
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                                Fig 3.4 Schematic map for the oxide formed in NiCrAl system at 1000°C [62] 

 

decreasing the critical Al content for external scale formation alloys can be described by the Wagner’s 

formula for the transition from internal to external Al oxidation [36]: 
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where DO and DAl are the diffusion coefficients of oxygen and aluminum in the alloy respectively, NO
(s) 

is the oxygen solubility in the alloy, � is the valence of the metal in the oxide per mole metal, and VOX 

and Vm are the molar volume of oxide and metal, respectively. The parameter g* is the critical value 

for the volume fraction of oxide, g=f(VOX/Vm), for transition from internal to external scale formation 

to occur, and is commonly amount to be approximately 0.3. 

 

Equation 3.6 shows that the critical Al-content for external alumina scale formation can be reduced if 

NO and DO are decreased and/or DAl is increased. One of these factors is responsible for the effect of Cr 

promoting external oxidation of Al. For example, from Table 3.1 it follows that the dissociation 

pressure of Cr2O3 is significantly lower than that for NiO. Therefore alloying with Cr will reduce the 

oxygen solubility in the Ni matrix. 

 

Cobalt additions in the MCrAlY coatings stabilize the � and � phases within a large temperature range 

thereby suppressing the ��-Ni3Al phase formation which is formed from � at temperatures below 

1000°C in ternary NiCrAl alloy [38]. This transformation was shown to be associated with an increase 

of the boundcoat CTE [35]. Fig 3.5 shows a comparison of CTEs for the MCrAlY, NiPtAl, a 

superalloy and YSZ.  

3.2.2 Effect of reactive elements (RE) additions in the coating on TGO formation  

Small additions of reactive elements such as yttrium are typically present in MCrAlY coatings with a 

concentration of about 0.1 to 1 wt% to improve the alumina scale adherence. Yttrium, however, added 

in higher concentrations was observed to increase the oxide scale growth rate due to the fact that RE- 
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Fig. 3.5 Physical CTE as a function of temperature a) for the MCrAlY and NiPtAl coatings, NiAl and Ni3Al, 
Al2O3 and YSZ as well as superalloy CMSX-3 [63-64],  b) Detailed physical CTE as a function of 
temperature for the NiCoCrAlYRe and CoNiCrAlYcoatings [35] 

 

oxide particles incorporated into the scale provide short-circuit paths for the inward oxygen transport 

[65]. Quadakkers [66] et al found that an increase of the yttria content in FeCrAl ODS alloy increases 

the scale growth rate. He explained that yttria-containing compounds enhance the oxygen transport via 

oxide grain boundaries or decrease the oxide scale grain size. A similar phenomenon of the oxygen 

inward transport being promoted by RE’s such as Y, Y+Hf and Y+Zr, in NiCoCrAl coatings were also 

observed in Ref. [67]. The high Y-content can result in the formation of different mixed Y-Al oxide 

precipitates at the grain boundaries of the oxide scale such as Y3Al5O12 (YAG: yttrium-aluminum-

garnet) and YAlO3 (YAP: yttrium-aluminum-perovskite) [68]. Some results indicated that these 

yttrium aluminates are detrimental to the oxide scale adhesion under certain circumstances [69] 

because of the different CTE’s of Al2O3 and the yttrium aluminates. Other authors [70] found, in 

contrast, a beneficial effect of mixed Y-Al oxide pegs on the scale adhesion. Consequently, the proper 

concentration of yttrium in the coating is a very important factor for protective scale formation. 

However, the concentration of “free” yttrium in the MCrAlY coatings is difficult to control due to 

variations in the coating manufacturing parameters [67]. The commercial bond coat alloys commonly 

contain higher Y concentrations than would be necessary for ideal scale doping; this is to compensate 

the fact that part of the Y reacts with oxygen impurities during the thermal spraying process.   

 

Several mechanisms [71-72] have been proposed to explain the RE effect, however, there is still no 

general agreement in the literature on their validity. These mechanisms include segregation or 

enrichment of RE to the metal/oxide interface to improve the adherence of oxide [72], change of the 

scale growth mechanism [73-74], hindering sulfur enrichment at the oxide/metal interface thereby 

preventing void formation [75]. The mechanisms, which got the largest amount of experimental 

evidence are: 
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� Changing the Al2O3 growth mechanism from simultaneous diffusion of metal and oxygen ions to 

nearly exclusive oxygen inward diffusion via oxide grain boundaries [66, 76]. Exclusive inward 

diffusion via TGO grain boundaries can effectively prevent vacancy condensation at the 

oxide/metal interface thereby improving the scale adherence. 

� Improving the adherence of �-Al2O3 to the bond coat by gettering deleterious sulphur impurities, 

which can otherwise facilitate void growth [77]; gettering thus suppresses delamination at the 

TGO/bondcoat interface [75, 78-80]. 

3.2.3 Effect of Pt on oxide scale formation  

To achieve a long TBC system lifetime, Pt-modified aluminide bondcoats are considered as coatings 

with a high potential because of their lower coefficient of thermal expansion (~1.3×10-5K-1 within 

400°C-900°C [63]) compared to MCrAlY coatings (~1.8-2.6×10-5K-1 between 600°C-1000°C [35]), 

which is more comparable with the CTE of Al2O3 (~0.7-0.8×10-5K-1 between 200°C-1200°C [63]).  

 

For NiAl diffusion coatings Pt additions were shown to prolong significantly the coating lifetime. 

Several mechanisms have been proposed to explain the positive role of Pt addition on the coating 

performance as compared that of the conventional aluminides: 

� Improving oxide adherence by preventing void formation at the oxide/coating interface [42], or 

mitigating the effects of sulphur in the alloy and coating [81-82]. 

� Promoting selective oxidation of Al, thereby promoting formation of a purer oxide, which in turn 

decreases the oxide growth rate and thus delays the onset of oxide spallation [83]. 

� Increasing the diffusivity of Al and decreasing the diffusivity of other elements, thereby 

promoting a rapid formation of alumina scales, also at lower Al concentration [84]. 

� To lower the rate at which �-NiAl transforms to the �´-Ni3Al phase beneath the oxide scale [85]. 

It is, however, not clear whether that occurs by stabilization of �-NiAl or whether it is a diffusion 

related mechanism. Pt increases slightly the isothermal oxide scale growth rate and slows down 

the transformation of transient to thermodynamically stable �-Al2O3 [33]. 

 

Attempts were made to use the Pt effect in TBC systems with MCrAlY bondcoats [86]. The lifetimes 

measured in cyclic oxidation test at 1000°C appeared to be well reproducible and longer than when 

using conventional bondcoats without Pt. 

 

3.3 Failure of TBC systems 

Although in some cases the TBC failure has been associated with the sintering of the TBC [87] and 

foreign object damage (FOD) [88] in most of the cases TBC-failure has been related to bondcoat 
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oxidation. It is important to mention that the TBC failure mechanisms for EB-PVD system differ from 

those for APS TBC coating.  

3.3.1 Failure mechanisms for EB-PVD TBC systems  

The failure of EB-PVD TBC’s typically occurs at the TGO/bondcoat interface indicating that the TGO 

formation is a critical issue in the durability of the TBC systems. TGO buckling (Fig 3.6a) and 

subsequent spallation is a commonly observed failure mode for the EB-PVD coatings under residual 

compressive stress in the TBC and the oxide scale. The stress is induced by the thermal expansion 

misfit between TBC, TGO and underlying metallic components (MCrAlY or NiPtAl bond coats and 

superalloy) upon cooling. Buckling of a thin, flat and isotropic film under compression will occur, if 

the stress exceeds a critical value, which can be calculated using the following equation [89]: 
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bd
hE�                                                                    (3.7) 

Here h is the oxide scale thickness, and db is the critical radius of decohesion for an unbounded region 

at the oxide scale/bond coat interface. The residual compressive stress in the TGO can presently be 

measured by luminescence piezospectroscopy, which  is a non-destructive method [90]. For typical 

values of the measured residual stress (3-5GPa) and a typical scale thickness (10�m) it can be shown 

using equation 3.7 that very large delaminations (db) are required to produce a buckle (of a few 

millimeters). Equation 3.7 also indicates that for a given defect size and thermal stress a critical TGO 

thickness for buckling should exist.      

The above described failure mode is typical for TBC’s with MCrAlY bondcoats. The coalescence of 

interface separations around imperfections such as oxide Y2O3/YAG pegs can result in the initiation of 

TBC failure as reported by Mumm et al [91], who calculated the localized high levels of stress at the 

TGO/bondcoat interface. Another site for failure initiation may be defects e.g. the vertical separations 

between the YSZ lamella in the TBC [92].  

            Fig. 3.6 Schematic of EB-PVD-TBC failure by a) buckling and b) TGO rumpling  
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A ratcheting phenomenon (Fig 3.6b) was proposed by A.G. Evans et al [93] to explain how the out-of-

plane tensile stresses induce the failure of TBC systems with NiPtAl bondcoatings. The stress induced 

by the initial interface imperfections can locally exceed the yield strength of the bond coat. Plastic 

deformation of bondcoat under temperature cycling results in the formation of undulations at the TGO/ 

bondcoat interface. The amplitude of these undulations is increased during cyclic oxidation (repeated 

cooling) and due to the occurrence of oxide growth stress produced during hot-dwell time. When the 

amplitude of an undulation is sufficient to induce a critical tensile stress normal to the interface, 

cracking at the TGO/bondcoat interface occurs. When these cracks are linked up to a defect of 

sufficient large size, macroscopic scale buckling or edge delamination occurs leading to macroscopic 

TBC failure.  

 

Surface displacements related to volumetric changes in the NiPtAl coating can induce TGO rumpling 

[94]. After high temperature oxidation, the flat bond coat was found to rumple which was explained by 

a phase transformation from �-NiAl to higher density ��-Ni3Al, induced by aluminum depletion as a 

result of oxidation and interdiffusion with substrate. The above phase transformation was claimed to 

result in a 8% to 38% volume decrease [94], depending on the extent of Al depletion. This contradicts 

with the observations in Ref. [95] which indicated that the � to �� transformation had little effect on the 

TGO adherence. The � phase can be also transformed into a martensite phase which will result in 2% 

volume decrease [96-97]. Both �� formation and martensitic transformation in the bondcoats are 

caused by the aluminum depletion and the nickel enrichment from the underlying superalloy. The 

phase transformation can induce an abrupt change of the CTE for the bondcoat [35], thereby affecting 

the stress situation and the lifetime of the TBC. 

 

For EB-PVD and APS TBC systems a number of parameters have been identified, which can affect 

their oxidation behavior and failure. For EB-PVD TBC systems, which form rather flat alumina scales, 

the parameters which determine the scale adherence are of primary importance for the lifetime. These 

parameters related to materials and operating conditions are discussed in detail in the next chapters. 

 

The material parameters include the main bondcoat composition. it was, for example, shown [35] for 

EB-PVD TBC systems the TBC lifetime was longer with Co-base MCrAlY bondcoat compared to Ni-

base bondcoats under discontinuous and cyclic conditions. The effect was explained by the coating 

microstructure which was stabilized by Co addition resulting in a smaller CTE of the bondcoat and 

consequently in an adherent oxide as compared to that on a Ni-base MCrAlY coating. 

 

As discussed in the chapter 3.2.2, the TGO adherence is critically affected by minor additions of RE’s 

(Y, Zr, Hf, La et al ). The RE not only improves the TGO adherence but, if present in large amounts, it 

is found to increase the TGO growth rate [98]. Therefore an optimum RE-content or reservoir is 
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required for obtaining long TBC lifetimes. Furthermore, for alumina forming alloys and coatings it 

was shown that co-doping with several reactive elements may result in improved oxidation resistance 

compared to that obtained in case of single element doping. However, for TBC systems there are much 

less data available, which demonstrate a positive effect or a mechanism of co-doping. A recent paper 

[67] indicates that Zr addition to the bondcoat has a large potential for lifetime extension of EB-PVD 

TBC systems. However, for APS-TBC systems a negative effect was observed duo to extensive 

internal oxidation [67]. 

 

In addition it should be noted that plasma-sprayed bondcoats contain considerable amounts of 

impurities, such as O which can tie up the RE’s, thereby reducing their reservoir available for being 

incorporated into the Al2O3 scale and exploited a positive effect on the oxide scale properties. It was 

shown that variations in the MCrAlY-bondcoat oxygen content can result in significant variations of 

TGO-adherence and, consequently, lifetime of EB-PVD TBC’s [67]. The bondcoat oxidation and thus 

TBC lifetime can be also significantly affected by processing steps after the bondcoat deposition [25].  

 

Recently, developments were initiated by several research groups to improve the oxidation 

performance and the reproducibility of the oxidation behavior of MCrAlY-bondcoats in EB-PVD-

TBC systems by optimization of the pre-treatment procedures. In reference [99] the heat-treatment of 

EB-PVD MCrAlY bondcoats before TBC deposition was performed at different vacuum pressures (at 

1100°C). It was found that the longest TBC-lifetime was obtained by a two stage heat-treatment, i.e. 

short-term heating in high vacuum to form a �-NiAl rich layer at the coating surface followed by 2 to 

4h at “poor” vacuum of 100Pa. In this way, a thin �-Al2O3 based scale with a high density of Y-rich 

oxide pegs formed during oxidation, resulting in superior lifetime compared to that obtained for the 

standard industrial heat-treatment. A positive effect of the heat-treatment of the bondcoat prior to 

TBC-deposition in vacuum compared to that in Ar-H2 on the TBC-lifetime was observed in [100]. The 

research group at Pittsburgh University [101] also found a significant effect of the pre-treatment 

procedures on the EB-PVD TBC lifetime. Very smooth bondcoat surfaces were found to provide the 

longest lifetime, but the lifetime reproducibility was poorer compared to that for bondcoats with 

moderate roughness. This was attributed to the lower number of nucleation sites for defects but easier 

crack propagation on very smooth surfaces. One important outcome of all these studies is that the 

heat-treatment procedure commonly used in industrial applications may not be optimum for achieving 

extended and reproducible TBC-lifetimes. Another important observation is that the TBC-lifetime 

depends on the superalloy substrate and the longest lifetimes were observed on specimens were Hf-

incorporation from the superalloy occurred during exposure [99, 102]. This was attributed to the 

positive effect of Hf on the alumina scale adhesion due to the formation of pegs at the scale/ bondcoat 

interface. 
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The effect of oxygen partial pressure during plasma spraying and vacuum heat-treatment parameters 

on the RE-distribution was studied using free-standing Y and Hf containing VPS NiCoCrAlY coatings 

[30]. In coatings sprayed at high pO2 the RE’s were tied up in form of oxide precipitates during the 

coating process. Consequently, the alumina scale adherence during oxidation was deteriorated. In 

contrast, in coatings sprayed at low pO2 an overdoping effect occurred, resulting in a rapid scale 

growth and extensive internal oxidation. In order to suppress this negative effect of the low pO2 

coating, an attempt has been made to influence the RE-distribution prior to oxidation via a vacuum 

heat-treatment in the range of 900 to 1100°C. It was found that such a heat-treatment results in a 

preferential oxidation of RE. At lower temperatures (900 and 1000°C) of heat-treatment, the oxides 

formed on the coating surface were discrete particles of hafnia and alumina, whereas at 1100°C the 

surface oxides were mainly yttria and occasionally yttrium-aluminium pervoskite and hafnia particles. 

The identification of the different RE-containing oxides was accomplished by fluorescence and Raman 

spectroscopy. The internal oxide formation (mostly yttria) was found also to be time and temperature 

dependent. Smaller oxide particles and deeper internal oxidation zones formed when using lower 

temperature heat-treatment. It was shown that the RE-distribution established during vacuum heat-

treatment affected the growth rate of the oxide scales formed during subsequent high-temperature 

oxidation. 

3.3.2 Effect of exposure conditions on TGO formation in the EB-PVD TBC systems 

Cooling from oxidation temperature produces a compressive stress in the TGO due to CTE mismatch 

with the underlying metal components (bondcoat and superalloy). This stress can be calculated using 

the following equation: 

�
��
�


�
�
�

1
TE

                                                        
 (3.8) 

where E is Young modulus of the oxide, and � is the oxide Possion ratio, �� is the CTE difference 

between the oxide and metal components, and the �T is the temperature drop. Stresses in the order of 

2-5GPa [93] measured by XRD or Fluorescence Spectroscopy in alumina scales formed in EB-PVD 

TBC systems with MCrAlY and NiPtAl bondcoat were reported. 

 

Some data are available on the effect of thermal cycle frequency on the scale spallation from alumina 

forming alloys and coatings but there are much less data available for TBC’s. In fact, there is no 

general agreement in literature on the effect of cycle frequency on the oxide spallation and TBC life. 

The results show a complex dependence on the alloy/coating type, exposure temperature as well as the 

total test time. Pint et al [103] found that increasing the thermal cycle frequency had little effect on the 

rate of oxide spallation of NiPtAl coating, however, a negative (increasing) effect for NiAl and 

FeCrAlY coatings, depending on a competition between thermal stress and growth stress as well as 
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defect development at high temperature. The rumpling amplitude of a NiPtAl coating was observed to 

linearly increase with the number of thermal cycles [104-105].  

 

With the use of hydrogen rich fuels instead of natural gas in the gas turbines to operate in IGCC-power 

plants with integrated CO2-capture, the water vapor content of the combustion gas at the turbine inlet 

will increase from 10% to 60%. The higher H2O content may reduce performance of the thermal 

barrier coatings. It was shown as [106] that partially yttria stabilized zirconia can exhibit accelerated 

transformation from the tetragonal into the monoclinic phase in wet air depending on the Y-content 

and distribution.  

 

Water vapor effect on bare superalloys, MCrAlY bond coatings, and NiPtAl diffusion aluminides have 

been studied using a humid atmospheres with a water vapor content �10% [107] and the most 

technologically relevant was an increased tendency to Al2O3 spallation [36]. Pint et al [107] found that 

the amount of oxide scale spallation increased with increasing water vapor content from 10% to 50% 

for pure NiAl alloy; water vapor reduced the formation of alumina whiskers and ridges at the scale/gas 

interface.  

 

A number of studies have been performed on the oxidation of alumina forming materials in H2O 

containing gases. In high purity FeCrAlY alloys properly doped with reactive elements no effect of a 

water vapor addition (up to 50 vol.%) to air on the oxidation behavior was observed up to 4000h at 

100h cycles [108]. It was shown that in Ni-base alumina forming superalloys [107, 109] the presence 

of water vapor during cyclic oxidation in air results in an increased amount of scale spallation. The 

negative influence of water vapor on the scale adherence was attributed to the decrease of the 

interfacial bonding between the scale and the metal, analogous to the mechanism for hydrogen 

embrittlement in metals. This mechanism is considered to be the primary reason for the so-called 

desktop effect, i.e. delayed scale spallation occurring at room temperature after extensive exposure 

time. This assumption was verified by hydrogen charging experiments using electrochemical cells 

[110]. A new approach was proposed recently to measure the hydrogen content at the scale/metal 

interface with resonant nuclear reaction analysis [111]. An important observation was that the adverse 

effect of water vapor on the alumina scale adherence only occurs if the latter has already been 

deteriorated e.g. by thermal cycling or impurities such as sulfur [107, 109]. Hence no H2O effect was 

found in the case of perfectly adherent oxide/metal interfaces. At high oxidation temperatures and low 

Al-contents in the materials, the water vapor was shown to extend the transient stage of the oxidation, 

thus promoting the formation of Ni-rich spinel [112].   

 

Cyclic oxidation experiments performed in Ar-4%H2-2%H2O (low pO2 gas) and air-2%H2O on an EB-

PVD TBC systems with a NiCoCrAlY bondcoat showed longer TBC lifetime in the former 
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atmosphere [98]. This was related to the slower growth rate of the alumina scale in the low pO2-

environment which had a result that the critical scale thickness to initiate spallation was attained at 

longer times compared to air oxidation, as also observed previously in studies with FeCrAlY-alloys 

[108].  

 

Many of the above effects discussed of materials and testing parameters refer to EB-PVD TBC 

lifetime. In contrast, in modern gas turbines, APS-TBC systems are state-of-the-art coatings. As will 

be shown in the next chapter the failure mechanisms of APS TBC’s are different from those for EB-

PVD TBC’s.  

3.3.3 Failure mechanisms for APS TBC systems 

Compared to EB-PVD TBC’s, a major difference with respect to TGO formation for APS-TBC’s is 

that in the latter systems the TGO formation locally differs between convex and concave parts of the 

bondcoat surface. This was demonstrated by Gil et al [46] who found that geometrical factors affected 

the oxidation of NiCoCrAlY-coatings. Oxide scale morphologies were investigated on flat 

NiCoCrAlY-surfaces (typical for bondcoats used for EB-PVD TBC’s) and rough coating surfaces 

(typical in case of APS-TBC bondcoats). Whereas on flat MCrAlY surfaces the scales were rather 

uniform in thickness and composition, on the rough surfaces significant differences in the scale 

morphology and microstructure occurred between the concave and convex coating surfaces. These 

differences were explained in terms of geometry-induced inhomogeneous depletion of Y and Al. One 

of the possible implications of the latter effect could be that variations in the fracture toughness of the 

oxide-metal interface on rough surfaces occur, which can contribute (in addition to the tensile out-of-

plane thermal stresses) to an earlier scale delamination in the convex than in the concave areas, as 

shown in Fig 3.7. 

 
 Fig. 3.7 Schematic of APS-TBC failure after long term thermal cycling, showing a) local void/crack formation 
at the bondcoat/TGO interface and b) subsequent long crack formation through penetrating of the TBC [113] 

 

The out-of-plane stress is mainly generated at the convex parts of the rough bondcoat surfaces, which 

is believed to be the common site for crack initiation. However, oxide delamination only occurs after 

the TGO has reached a critical thickness [114], which is similar to the situation prevailing in case of 
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EB-PVD TBCs. Linkup of micro-cracks within the APS TBC finally results in TBC spallation and 

failure as proposed by De Masi-Marcin et al [115]. For obtaining crack-linking the cracks should 

penetrate the TBC in the locations above the concave parts of the bondcoat roughness profile. It was 

shown by Vaßen et al [116] that at small TGO thickness the residual stress in the TBC in these areas is 

compressive, which hinders the crack linking. As the TGO grows with time, a conversion of the 

residual stress from compressive into tensile occurs after a given time, which permits crack linking 

and failure. This means that the lifetime of APS-TBC systems can be significantly longer than the time 

for TGO delamination in the convex parts of the bondcoat.  

 

For APS-TBC systems, it was proposed that Al depletion in the bondcoat can result after longer 

exposure times in formation of non-protective oxides, e.g. spinel, which can provide sites for initiation 

and propagation of failure relevant cracks [117]. It was observed that TBC systems with MCrAlY 

bondcoats produced by air plasma spraying are susceptible to spinel formation due to the so-called 

“diffusion cell” effect [118], resulting from oxidation of individual MCrAlY powder particles during 

spraying. This leads to a hindering of the Al-flux from the bondcoat bulk towards the surface for 

alumina scale formation. Each of the solidified MCrAlY powder particles represent a “diffusion cell” 

which failed after relatively short time by breakaway oxidation involving Ni and Co rich oxide 

formation resulting in rapid TBC failure. 
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4 Aims and structure of the present investigations 

4.1 Aims of the present investigations 

Constantly increasing inlet temperatures of gas turbines related with efficiency increase require 

extended and more reproducible lifetimes of TBC systems with MCrAlY and NiPtAl bondcoats. In 

most cases, formation of the TGO is involved in failure initiation in APS-TBC systems and the EB-

PVD TBC lifetime can commonly be directly correlated with the TGO spallation. According to 

literature, TGO formation and failure in TBC systems greatly depend on the main bondcoat 

composition, and minor bondcoat chemistry such as concentration of reactive elements and impurities 

as well as coating processing. Increased water vapor content in IGCC power plants with a hydrogen 

turbine and possibly reduced oxygen partial pressure in the atmosphere can promote earlier failure of 

EB-PVD TBC systems, however, the effect on APS-TBC systems has, until now, not been extensively 

studied. With regard to the influence of hot and cold dwell times as well as cooling rates on TBC 

lifetime only limited data available for EB-PVD TBC systems and virtually no information for APS-

TBC systems could be found. In many cases the information from different literature sources is very 

difficult to compare because of different processing of TBC-systems and/or the testing parameters.   

 

A lot of MCrAlY coatings are presently commercially available, most of them being neither NiCrAlY 

nor CoCrAlY, but NiCoCrAlY, with different Ni and Co-contents. Over a wide temperature range 

(800-1100°C), previous studies [25] have shown that CoNiCrAlY coatings have a better phase 

stability and a lower CTE compared to NiCoCrAlY coatings with low Co content.  

 

The first aim of the presented investigation is therefore to study the effect of bond coat main 

composition, in particular Co and Ni content, on the lifetime of EB-PVD TBC’s under various thermal 

cycling conditions as well as to verify whether a similar lifetime effect trend with respect to Co-

addition to the bondcoat also prevails for APS-TBC system.  

 

The second aim of this investigation is to study the effect of RE additions and impurities in the 

MCrAlY coatings on the lifetime of TBC systems. Reactive element co-doping by Y+Zr is known to 

improve oxidation resistance of FeCrAlY-alloys. Preliminary studies of EB-PVD TBC systems with 

Zr-doped MCrAlY bondcoats indicated a better performance than with conventional MCrAlY 

bondcoats without Zr [67]. However, no verification of the positive Zr-effect was given under various 

testing conditions, including temperature cycling at near-operation temperature T�1000°C as well as 

in different testing atmospheres. For better understanding the Zr-effect on the bondcoat oxidation 

behavior and the failure of EB-PVD TBC systems, oxidation experiments are necessary with various 

cycling parameter at 1000°C. Higher O2-content in MCrAlY coatings resulted in shortening the 
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lifetime and deteriorating the lifetime reproducibility of EB-PVD TBC systems [67]. On the other 

hand in APS-TBC systems with Zr doped NiCoCrAlY bondcoat with low O-content showed 

extremely short lifetimes due to local overdoping. Therefore in the present study APS-TBC systems 

with MCrAlY bondcoats with and without Zr addition and various O-contents were studied to 

investigate the effect of this impurity on lifetime. Furthermore in this study, an EB-PVD TBC system 

with Zr doped MCrAlY bondcoat was oxidized in H2/H2O low pO2 atmosphere, and then compared to 

traditional MCrAlY coatings to study the effect of oxygen partial pressure on oxidation behavior and 

failure of TBC with Zr-doped MCrAlY bondcoats. In this way, the possible existence of a critical 

TGO thickness for the occurrence of TBC failure should be estimated. 

 

The third aim of the present study was to investigate the effect of water vapor on the lifetime of EB-

PVD and APS TBC systems. Higher H2O partial pressures are claimed to increase oxide scale 

spallation from alumina forming coatings and cause desktop spallation for EB-PVD TBC systems with 

conventional MCrAlY bondcoats, whereas for APS-TBC systems hardly any data are available. To 

study the effect of water vapor on the oxidation behavior and lifetime of EB-PVD and APS TBC 

systems, specimens with four types of MCrAlY bondcoats were oxidized in air with 20%H2O and the 

results were compared with data obtained during exposures in laboratory air.  

 

The fourth aim of the current study was to systematically study the effect of temperature cycling 

parameters, i.e. hot/cold dwell times, heating and cooling rates as well as low dwell temperature, on 

the life of APS TBC systems with MCrAlY bondcoats. For this purpose, selected TBC-systems were 

oxidized at three different cooling-rate and five types of thermal cycling parameter sets with different 

hot/cold dwell time were studied. The specimens with porous TBC and porous bondcoat were tested to 

study the effect of microstructure of APS TBC and bondcoat on TBC lifetime.   

 

Finally, an assessment of the oxidation behavior and lifetime of EB-PVD TBC systems with NiPtAl 

bondcoat was performed as an alternative to systems with MCrAlY bondcoats. Two EB-PVD TBC 

systems, i.e. one with a high and one with a low Al-activity NiPtAl bondcoat, were tested under 

conditions of varying temperature, atmosphere (dry and wet environments) and cyclic parameters. For 

better understanding of the effect of the initial oxidation behavior of NiPtAl on the oxide scale 

formation, short time oxidation experiments followed by analytical characterization were performed 

on NiPtAl coating surfaces without TBC.  

 

4.2 Outline of the present work 

The studies carried out in the present work are divided in three major sections. In the first part 

investigations related to EB-PVD-TBC systems with MCrAlY-bondcoats will be presented. The 
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studies will first show a comparison of the oxidation behavior and lifetime related to systems with Ni-

base and Co-base MCrAlY-bondcoats under various cycling conditions. Second, the effect of a minor 

Zr-addition in the bondcoat on the EB-PVD-TBC lifetime will be presented under variation of 

temperature cycling conditions as well as oxygen partial pressure in the atmosphere. Finally, the 

studies on the influence of water vapor content in high pO2 atmospheres on TBC-lifetimes will be 

presented.  

 

The second part of the thesis concentrates on APS-TBC systems with MCrAlY-bondcoats. The effect 

of main bondcoat composition is studied using Co-base and Ni-base MCrAlY bondcoats, whereby 

three TBC-systems with various microstructural parameters (TBC-density, bondcoat-density and 

roughness profile) are tested in cyclic oxidation experiments. The effect of Zr-addition on APS-TBC 

lifetime is studied using TBC-systems with deliberately varying O-content in the bondcoat. In 

addition, the failure mechanisms of the APS-TBC systems under various cycling parameters as well as 

in wet and dry, high pO2 atmospheres are studied.    

 

The third part of the thesis concentrates on the oxidation mechanisms and lifetime of EB-PVD-TBC 

systems with NiPtAl-type bondcoats produced by low and high Al-activity CVD-process. The studies 

include cyclic oxidation testing under various cycling conditions at 1100 and 1150°C in wet and dry 

gases and present a comparison of the TGO growth rate, adhesion and failure mechanisms between the 

NiPtAl and MCrAlY-bondcoats. Finally the effect of the presence of a EB-PVD TBC on the oxidation 

resistance of NiPtAl-coatings is investigated.  
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5 Experimental  

5.1 Materials and geometry of the specimens 

5.1.1 TBC-systems with MCrAlY coatings 

Two different specimen geometries were used in this study for TBC-systems with MCrAlY bondcoats, 

i.e. block and cylinder, as shown in Fig 5.1. The compositions of the studied Ni-base superalloys used 

as substrates are summarized in Table 5.1. 

 

 

 

 

 

 

                                         
                              Table 5.1 Nominal compositions of Ni-base superalloys in wt. % [119] 

 

A number of conventional and modified MCrAlY coatings were deposited on the superalloy substrates 

by vacuum plasma spraying (VPS) and high-velocity oxy-fuel (HVOF) techniques. The nominal 

chemical compositions of the studied bondcoats are presented in Table 5.2. 

 

After the bondcoat deposition the specimens were subjected to a two-stage vacuum heat treatment, 

according to the specifications for the respective superalloys e.g. for IN738: 1120°C/2h and 

subsequently 845°C/24h (vacuum base pressure of approximately 10-5 mbar). The heat-treated 

specimens were coated with yttria partially stabilized zirconia by electron-beam physical vapor 

deposition (EB-PVD) or air plasma spraying (APS) using state-of-the-art manufacturing procedures 

Alloys Ni Co Cr Al Mo W Re Ta Ti Hf Zr 

IN738LC Bal 8.5 16 3.5 1.7 2.5 - 1.7 3.5 - 0.05 

CMSX-4 Bal 9 6.5 5.6 0.6 6 3 6.5 1 0.1 - 

Rene 80 Bal 9.5 14 3 4 4 - - 5 - 0.03 

CM247LC Bal 9 8 5.6 0.5 10 - 3.2 0.7 1.4 0.01 

Fig. 5.1 Schematic of the geometries for TBC coated specimens with MCrAlY bondcoats 

( block) 

150-250 �m  

250-350 �m  

5 mm 

YSZ 

MCrAlY  

Superalloy 

( cylinder ) 

Superalloy
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Ø 10 mm 

250-350 �m 

BC: 150-250 �m 
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[120]. Prior to EB-PVD TBC coating, smoothening of the bondcoat surface was performed by 

grinding or barrel (media) finishing.  

 

 

 

  

 

 

5.1.2  NiPtAl coated specimens with/without TBCs  

The specimens with NiPtAl coatings were supplied by MTU AERO-Engines GmbH, Germany. The 

10×10×2 mm single-crystal superalloy CMSX-4 coupons were electroplated with a thin layer (about 6 

�m) of platinum, and subsequently aluminized by a chemical vapor deposition process to produce low 

activity (low-aAl) aluminum coating and high activity (high-aAl) aluminum coatings. One side of an 

aluminized specimen was coated with an EB-PVD TBC ceramic top coat as shown in Fig 5.2. A hole 

(see Fig 5.3) was drilled (before the coating treatment) to suspend the specimens for oxidation testing. 

 

 

 

 

 

 

 

 

   

Bond coat Ni Co Cr Al Y Re Zr 

NiCoCrAlY (low Al) Bal. >20 <20 10 0.3 <2 - 

NiCoCrAlY (high Al) Bal. <15 >20 11 0.4 <2 - 

CoNiCrAlY  >25 Bal. >20 10 0.6 - - 

NiCoCrAlY (low Al)+Zr Bal. >20 <20 10 0.3 <2 0.6 

CoNiCrAlY+Zr >25 Bal. >20 10 0.6 - 0.6 

Gamma NiCoCrAlY Bal. 15 22 6 0.6 - - 

Beta  NiCoCrAlY Bal. 8 - 20 0.6 - - 

Table 5.2 Nominal chemical composition of the studied bondcoats in wt. %  

Fig.5.2 Schematic of the specimen geometry with NiPtAl coating partially 
coated with EB-PVD TBC

2mm

50-80 �m
150-200 �mYSZ

NiPtAl 

CMSX-4 
Superalloy 

NiPtAl 

Fig 5.3 Macro-pictures of specimens with NiPtAl coatings, a) side with EB-PVD-TBC coating; 
b) side without TBC coating 

(a) (b) 
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5.2 Oxidation experiments  

All specimens were ultrasonically cleaned in acetone and ethanol prior to the oxidation experiments. 

The TBC systems with MCrAlY and NiPtAl bondcoats were tested in dry or wet atmospheres in the 

temperature range of 1000°C-1150°C under a total pressure of 1 bar and a gas supply rate of 10 liter/h. 

The required H2O partial pressures were produced using a bubble humidifier. Fig 5.4 shows 

schematically the set-up for discontinuous oxidation experiments. The types of oxidation experiments 

for the various coating systems are shown in Table 5.3. 

For the discontinuous oxidation experiments the specimens were exposed in the test gases using 166 

hours cycles. At the end of each cycle the samples were cooled down in the furnace to near-room 

temperature and then manually taken out for inspection. 

TBC systems Thermal cycling 
Heating/cooling time 

T 

(°C) 
Atmosphere 
composition TBC Bondcoats 

EB
-P

V
D

 

CoNiCrAlY(+Zr) 2h/15min 
2h/45min 

4h/1h 
Discontinuous 

(166h/12h) 

1050 

1100 

Air 

Air-20%H2O 

Ar-4%H2-2%H2O 

NiCoCrAlY (low Al) (+Zr) 

NiCoCrAlY (low Al) 

Low-aAl NiPtAl  
2h/15min 

4h/1h 
Isothermal 

Discontinuous 
(166h/12h) 

1000 
1050 
1100 

Synt. Air 
Air-10% H2O 

Ar-20%O2 
Ar-4%H2-2%H2O High-aAl NiPtAl  

A
PS

 

CoNiCrAlY 2h/15min 
105min/15min 
75min/45min 

21h/3h 
18h/6h 

Discontinuous 
(166h/12h) 

1050 

1100 

Air 

Air-20%H2O 
NiCoCrAlY 

NiCoCrAlY (low Al) 

Fig. 5.4 Schematic set-up for discontinuous oxidation testing in wet gases 

Synt.Air

Exhaust 

H2 Ar

Boat with samples

Furnace

Bubble Humidifier

O2

Reaction gas

Condensor

Reactor

     Table 5.3 Test conditions for various types of coating systems in this study  
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 Cyclic oxidation of the TBC specimens was performed in a vertical resistance heated furnace in 

laboratory air, synthetic (dry) air, and in air with H2O as well as Ar-H2-H2O atmospheres. The 

specimens were automatically moved into the hot furnace, kept at high temperature for a preset time 

and then removed from the furnace to cool down to near room temperature with pressurized or still air.  

 

For all experiments in this study, the given oxidation times refer to time at high temperature, which 

were recorded starting from the time when the specimens were moved in the hot zone of the furnace. 

The experiments aiming to determine the TBC lifetime were stopped when macroscopic cracking or 

spallation of the TBC were observed on the surface of the TBC specimens during regular inspections. 

5.3 Specimen characterization 

To evaluate the TGO morphology and the growth kinetics, metallographic polished cross-sections of 

the oxidized TBC specimens after various exposure times were prepared using a common specimen 

preparation method. The specimens for cross-section analysis were mounted in the epoxy resin, then 

ground and polished to get a mirror-like cross-section for optical metallography and scanning electron 

microscopy (SEM). For specimens without TBC, a 20-30 �m thick Ni-layer was produced on the 

sample surface through electroplating in a NiSO4 bath prior to the mounting to minimize the oxide 

scale damage during grinding and polishing. A thin (nm-range) Pt or Au layer was commonly 

sputtered on the surface of the oxide scales by physical vapor deposition (PVD) prior to deposition of 

the Ni layer to increase the electrical conductivity of the oxidized sample surface. 

 

Analysis of the as-received and oxidized materials was performed with optical metallography, 

scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX), and X-ray 

diffraction (XRD). For measurements of the residual stresses and identification of oxide phases in the 

TGO, photo-stimulated luminescence spectroscopy (PSLS) was employed according to the commonly 

used procedure [90, 121]. From selected areas of the oxidized surfaces of the NiPtAl coating thin 

lamellae were prepared using a focused ion beam (FIB) facility with a Ga ion beam, for analytical 

studies in a transmission electron microscope (TEM). On oxidized NiPtAl coatings, surface profiles 

were measured by contact Profilemeter to quantity primarily occurring surface rumpling. 
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6 Parameters affecting lifetime of EB-PVD TBC systems with 
MCrAlY bondcoats 

6.1 Effect of Co and Ni contents in MCrAlY bondcoats on TBC lifetime  

The lifetimes of EB-PVD TBC systems with different Co and Ni contents in MCrAlY bondcoats after 

2h/15min cyclic oxidation at 1100°C in air are shown in Fig 6.1. The lifetime of TBC’s with 

NiCoCrAlY (high Al) bondcoat was only about 200h. However, the lifetime of the TBC system with 

CoNiCrAlY bondcoat was longer by a factor of 4-5 compared to that with the Ni-base bondcoat. The 

lifetime trend of EB-PVD TBC systems during cyclic oxidation at 1100°C in air was similar to that 

observed during discontinuous oxidation in Ref. [25]. 

 

Fig 6.2 shows the cross-sections of the TBC specimens after 2h/15min cyclic oxidation for 100h at 

1100°C in air. The oxide scales at the TBC/bondcoat interface for Ni and Co-base coatings presented 

similar morphologies and a thickness of approximately 3.0 �m. Precipitates of �-Cr could be found in 

NiCoCrAlY (high Al) bondcoat as indicated in Fig 6.2a. This can be attributed [25] to the main 

coating composition, with high Cr, high Al, low Co contents as well as additions of Re. As discussed 

Fig. 6.1 Lifetime of EB-PVD-TBC with MCrAlY bondcoats after cyclic (2h/15min) 
oxidation in air at 1100°C in air
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Fig. 6.2 Optical metallographic cross-sections of EB-PVD-TBC systems with MCrAlY bondcoats 
after cyclic (2h/15min)  oxidation for 100h at 1100°C in air,  a) NiCoCrAlY (high Al), b) CoNiCrAlY.  
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in Ref. [25] and [38] specifically the Re-additions promote the formation �-Cr.  

 

The oxide scale thickness was about 3.5 �m for the Ni-rich MCrAlY coating and 8.0 �m for the Co-

rich coating respectively when the TBCs failed as shown in Fig 6.3. The TBC failure in both systems 

occurred at the TGO/bondcoat interface. In the Co-base bondcoat, a significant �-NiAl depletion 

occurred in the upper part of the bondcoat due to the oxide scale formation during nearly 1000 h 

exposure. The Al-depletion after TBC failure was much less pronounced for NiCoCrAlY (high Al) 

coating due to a significantly shorter TBC lifetime as compared to CoNiCrAlY bondcoat. The longer 

lifetime of the EB-PVD TBC system with CoNiCrAlY bond coat can be attributed to the fact that the 

higher Co-content in the CoNiCrAlY coating stabilized the two-phase (� + �) bondcoat microstructure. 

In contrast, in the NiCoCrAlY (high Al) bondcoat, the lower Co-content in combination with a higher 

Al content as well as Re addition of 2% wt resulted in a phase transformation during cooling from 

oxidation temperature at about 900°C. The phase transformation of the type � + � � �´ + � resulted in 

a volume change and associated increase in the bondcoat CTE leading to an increase in the thermal 

mismatch stress in the TGO, which is relaxed by TGO delamination [25]. An additional reason for an 

increase in the thermally induced residual stress could be increase in creep strength of the NiCoCrAlY 

coating due to the above phase transformation, which could reduce the amount of TGO stress relaxed 

by bondcoat creep or plastic deformation [122]. Thereby a TGO delamination and consequently TBC 

failure were promoted at smaller TGO thickness on the NiCoCrAlY (high Al) bondcoat as compared 

to the CoNiCrAlY bondcoat. 

 

In order to find out the relative importance of bondcoat creep relaxation and phase transformations 

driven CTE mismatch on the TBC lifetime, cyclic oxidation experiments were performed with varying 

cooling parameters. Thereby in one set of experiments the standard cooling time 15min was extended 

to 45min. The cooling rate of the 45min cooling by applying a heating shield to reduce the thermal 

radiation effect from the vertical furnace was slower than the 15min. In addition, the flow rate of the 

cooling air was reduced. These modifications to the specimen cooling resulted in temperature vs. time 

curves shown in Fig 6.4. 

Fig. 6.3 Optical cross-sections of EB-PVD-TBC with MCrAlY bondcoats after cyclic (2h/15min)  
oxidation till TBC failure at 1100°C in air,  a) NiCoCrAlY (high Al), 180h, b) CoNiCrAlY, 972h 

b):972h
�-Cr 

a): 180h 25�m 25�m 
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The results of the cyclic oxidation testing with 15min and 45min cooling are shown in Fig 6.5. It can 

be seen that for the EB-PVD TBC systems with both NiCoCrAlY and CoNiCrAlY types of bondcoats 

the lifetime is about a factor of two shorter in the test with 45min cooling than in the test with 15min 

cooling. Cross-sections of the specimens after 2h/45min cycling are presented in Fig 6.6. If the 

bondcoat creep relaxation would have a major impact on reducing the residual stress in the TGO, 

longer TBC lifetimes would have been expected with slower cooling rate. This was, however, not 

observed. Shortening of the TBC lifetimes with slower cooling rate therefore indicates, that phase 

transformations in the bondcoat during cooling could play a major role in determining the time to 

failure than bondcoat creep. 

 

 

 

 

 

 

 

 

 

The temperature-time curves in Fig 6.4 indicate that an additional parameter might have an effect on 

the TBC lifetime in both tests, i.e. the time at low temperature. In the test with 15min cooling the 

specimens are at T<50°C for about 10 minutes, whereas in the test with 45min cooling the 

temperatures below 50°C are maintained for about 20min per cycle. Therefore, for the same number of 

Fig. 6.4 Temperature time curves during cooling in oxidation testing with 2h/15min 
and 2h/45min cycles 
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Fig. 6.5 Lifetimes of EB-PVD-TBC with MCrAlY bondcoats after 2h/45min and 2h/15min 
cyclic oxidation in air at 1100°C (compare cooling curved in Fig 6.4)
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cycles the cold dwell time below 50°C is about twice longer in the test with 45min cooling cycles 

compared to that in 15min cooling cycles. The longer time at low dwell temperature could promote 

subcritical crack growth at the TGO/bondcoat interface similar to a desk-top spallation mechanism 

proposed by Smialek [79], who correlated this effect with the presence of water vapor in the test 

environment. In chapter 6.3.2 the effect of water vapor on lifetime of EB-PVD-TBC systems with 

MCrAlY-bondcoats will be studied in more detail. 

 

6.2 Effect of exposure conditions on lifetime of EB-PVD TBC systems with 
conventional and Zr doped MCrAlY bondcoats 

The lifetime of EB-PVD-TBC systems with and without a minor Zr-addition to the base NiCoCrAlY 

(low Al) bondcoat on IN738 cylindrical substrates was studied during oxidation exposures with 

different heating dwell times, i.e 166h for discontinuous oxidation and 2h for cyclic oxidation. 

 

Figure 6.7 shows the TBC lifetimes after discontinuous and cyclic oxidation testing at 1000°C. During 

discontinuous testing (166 h cycles) the lifetime of the TBC-system with Y+Zr bondcoat was by 

approximately a factor of 4 longer than that with the Y bondcoat. In contrast, only a 50% longer 

lifetime for the system with co-doped bondcoat was obtained during the cyclic (2h cycles) exposure. 

Thus, for the Y bondcoat both testing procedures delivered similar TBC lifetime results, whereas for 

the Y+Zr bondcoat the lifetime was significantly shorter under the 2h cycling test.  

 

The cross-sections of the TBC specimens (Figs 6.8 and 6.9) after both types of testing revealed that 

the specimens with the Y-bondcoat formed compact, flat TGO’s. The TBC failure occurred by TGO 

delamination from the bondcoat in agreement with observations of many other authors (see e.g. 

references [123-124]). On the contrary, the TBC system with the Y+Zr bondcoat formed 

inhomogeneous, inwardly growing TGO’s with oxide intrusions penetrating into the coating. The TBC  

Fig. 6.6 Optical metallographic cross-sections of EB-PVD-TBC with MCrAlY bondcoats after cyclic  
oxidation 2h/45min till TBC failure at 1100°C in air, a)NiCoCoAlY,108h, b) CoNiCrAlY, 432h 

a) b) 
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failed under both thermal cycling conditions by cracking at/near the TGO/TBC interface and within 

the TGO. It is important to note that the TGO thickness after comparable times of exposure was much 

larger for the Y+Zr than for the Y bondcoat. Obviously, the substantial lifetime dependence on the test 

procedure for the TBC-system with Y+Zr bondcoat is related to the specific TGO-morphology and the 

associated failure mechanism, which is discussed below in relation to the Y-bondcoat. 

Fig. 6.7 Lifetimes of EB-PVD TBC systems with NiCoCrAlY (low Al) bondcoat with and without minor Zr-
addition during discontinuous (166h hot dwell time) and cyclic (2h hot dwell time) oxidation experiments at 
1000°C in air 
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In the TBC-system with the Y bondcoat the failure occurred at the flat TGO/bondcoat interface, where 

the delamination cracks, once initiated, could easily propagate. For such flat, compact oxide scales the 

failure criterion was shown [125] to be the critical thermal strain energy, which for a given coating 

system is determined by a critical temperature drop and TGO-thickness. The critical temperature drop 


T  for the oxide spallation is given in [125]: 
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where, �F, fracture energy of the oxide/metal interface; f, fraction of strain energy used in the fracture 

process; X, the oxide scale thickness; EOX, the Young’s modulus of the oxide; 
�=�metal-�oxide, linear 

thermal expansion coefficient of metal and oxide respectively; �, Possion’s ratio. 

  

The validity of the critical TGO thickness for failure for EB-PVD-TBC systems with MCrAlY-

bondcoats forming flat TGO’s was demonstrated recently by Toscano et al. [98], who performed 

cyclic exposures in test atmospheres with different oxygen partial pressures. The argument of a critical 

TGO-thickness explains why for the TBC-system with the Y bondcoat comparable lifetimes expressed 

in hours at the oxidation temperature were found in the discontinuous and cyclic tests. Assuming that 

the TGO growth rate is not substantially affected by the cycle frequency, the critical TGO thickness 

for failure of about 6μm was reached after approximately the same accumulated “hot time” in both 

tests (Fig. 6.8). The relationship between the TGO growth and crack length for the system with Y-

bondcoat under both testing conditions are schematically shown in Fig 6.10a. 

 

The crack propagation in the case of the Y+Zr bondcoat at the TGO/bondcoat interface is hindered due 

to the inhomogeneous TGO morphology. The cracks stop in the regions of TGO-intrusions with a high 

out-of-plane interfacial compressive stress [93, 122]. Therefore, the thermal mismatch stress in the 

TGO is mainly relaxed by cracks initiated at defects at the TGO/TBC interface and within the TGO 

(Fig.6.9). The crack formation was found to be initiated already after relatively short exposure times, 

because of the rapid growth rate of the TGO on the Y+Zr bondcoat. The reason for this rapid local 

TGO-growth is incorporation of internal zirconia precipitates in the inwardly growing alumina based 

scale, as shown previously for alumina forming FeCrAl-base alloys [126]. Consequently, already after 

relatively short exposure times thick TGO’s form on the Y+Zr bondcoat, which can accumulate large 

amounts of strain energy available for fracture upon cooling.  

 

The strain energy stored in the scale provides the driving force for crack initiation and growth. 

However, the exact crack paths and the rate of crack propagation also depend on the microstructure 

and morphology of the TGO. For the uniform, dense alumina scale formed in the TBC-system with 

Zr-free bondcoat the typically observed crack propagation path is that at the TGO/bondcoat interface. 
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Therefore, reaching a critical TGO-thickness for this system essentially means that the end of TBC 

lifetime is reached irrespective of cycle frequency. This is not the case for the TBC system with the 

Y+Zr-doped bondcoat, where the cracks are initiated at various locations on defects (ZrO2 precipitates 

and porosity) within the TGO and at the TBC/TGO interface. It is obvious that linking of cracks 

formed at various locations is slower than in case of a single, flat interface. Also the CTE mismatch 

between the TBC and TGO is smaller compared to that between the TGO and the bondcoat [93]. 

Therefore, formation of thick TGO’s in the TBC-system with Zr-containing bondcoat does not result 

in an immediate failure and the lifetime in the discontinuous test is significantly longer than that with 

the Zr-free bondcoat. 

 

Besides the TGO thickness and microstructure, a third factor determining the rate of crack propagation 

is the frequency of thermal cycling. In the cyclic oxidation test the specimen is cooled each 2 h, 

whereas in the discontinuous test it is cooled each 166 h. More rapid propagation of cracks under the 

former cycling can be expected, as during each cycle the strain energy in the thick TGO is available 

for crack extension. Consequently, the lifetime of the TBC-system with Y+Zr bondcoat is significantly 

shorter in the cyclic than in the discontinuous test, although it is still about 50% longer than that of the 

system with Y bondcoat. Fig 6.10b presents a schematic illustration of the effect of the cycling 

conditions on the crack formation and lifetime of the TBC-system with Y+Zr bondcoat. 

 

The effect of the TGO defect size and morphology on the failure mechanism and lifetime of EB-PVD-

TBC-systems with conventional MCrAlY-bondcoats has been investigated in several studies in the last 

Fig. 6.10 Schematic illustrating effect of cycling conditions on the lifetime of EB-PVD-TBC systems with a) 
NiCoCrAlY-bondcoat and b) NiCoCrAl Y+Zr containing bondcoat.  X*, critical TGO thickness; l*, critical 
crack length for TBC failure 
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decade. Mumm et al. [91] and Evans et al. [93] claimed that presence of Y-rich oxide pegs can initiate 

TGO-separations in their vicinities. In contrast a more recent analysis by Zhu et al. [124] indicated that 

such small pegs can even improve the TGO-adherence similar to suggestions made earlier [127] for 

other alloy systems forming alumina scales. According to the author’s knowledge no modeling of 

crack formation in the TBC-systems forming heterogeneous TGOs, such as that observed for Y+Zr 

bondcoats in the present study has been performed. Such a modeling is, however, highly desirable to 

assess the potential benefits of the bondcoat co-doping with Y+Zr under various operation conditions. 

 

It is important to mention that the Y+Zr bondcoat contained rather high amounts of Y and Zr (0.6 

mass % of each element) and according to detailed studies published elsewhere [67] a relatively low 

oxygen content (around 300 ppm). This caused excessive TGO growth in the initial stages of oxidation 

as a result of “overdoping” by Zr [128-129]. Comparison of the TGO’s formed during discontinuous 

(lifetime of 8820h) and cyclic (lifetime of 3730h) exposure of specimens with the Y+Zr bondcoat 

reveals only a minor increase in the TGO-thicknesses with time in the late stages of exposure. This 

indicates that virtually the whole Zr-reservoir in the bondcoat was depleted in the first 3730h of 

exposure. It has been shown previously that the effective reactive element reservoir not only depends 

on the RE content of the coating but also on the coating thickness and the exact oxygen content. In 

high oxygen coatings part of the Zr would be tied up during the manufacturing process into a stable 

oxide compound thus preventing its incorporation into the TGO. As a consequence much longer TBC-

lifetimes observed in the present work with the Y+Zr bondcoat in the discontinuous test can also be 

achieved in the cyclic test, as indeed verified experimentally (Fig 6.11 and reference [67]). A major 

challenge in obtaining long, reproducible lifetimes is thus a precise control of the processing 

parameters, such as vacuum quality during plasma spraying, vacuum quality and temperature regime 

during subsequent heat-treatment as well as coating thickness. Variations in these processing 

parameters were shown to affect not only the absolute values of the TBC-lifetime but also the lifetime 

reproducibility [30].  

TBC

Bondcoat 20μm

b) 

Fig. 6.11 BSE-SEM cross sections images of failed TBC specimens with Y+Zr bondcoats after cyclic 
oxidation at 1000°C in air: a) Bondcoat with 0.1 wt % Y and 0.2 wt % Zr after 4860h cyclic oxidation, and b) 
Bondcoat with 0.6 wt % Y and 0.6 wt % Zr after 3730h cyclic oxidation 

20μmBondcoat
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6.3 Effect of atmosphere composition on lifetime of EB-PVD TBC systems with 
MCrAlY bondcoats  

6.3.1 Effect of oxygen partial pressure on lifetime of EB-PVD TBC systems with conventional and 
Zr doped MCrAlY bondcoats 

It is well known that the growth and adherence of alumina scales on high temperature materials can be 

affected by the composition of the operating atmosphere. Indications were found that the presence of 

water vapor in the atmosphere can accelerate scale spallation and promote internal oxidation of Al 

thereby negatively influencing critical Al-content for transition to external oxidation [112]. These 

detrimental effects of water vapor might become important in power plants with CO2-capture where 

the operating environments of gas turbines will contain higher amounts of H2O and possibly have 

lower oxygen partial pressure (pO2) [2] than in conventional [6] gas turbines.  

 

It is therefore important to study the oxidation behavior and lifetime of TBC systems as a function of 

bondcoat main and minor composition as well as atmosphere. In the present work the alumina scale 

formation and associated lifetimes of EB-PVD TBC’s have been studied for an Y+Zr co-doped 

CoNiCrAl, in a high-pO2 gas and a low-pO2 gas containing water vapor. The reason for using a low 

pO2 gas was to evaluate possible existence of critical TGO-thickness, as observed for an EB-PVD 

TBC system with Zr-free MCrAlY-bondcoat [67]. In the latter case after the same oxidation time 

(same number of cycles) a much lower oxidation rate was observed in the low pO2 gas as compared to 

high pO2 gas. These data are used in the present work as a reference for comparison with the Zr-doped 

bondcoat.  

 

The material used as a substrate was the Ni-base superalloy IN738LC. Two bondcoats of Ni-base 

MCrAlY, termed NiCoCrAlY (low Al) and Co-base, termed CoNiCrAlY+Zr were deposited on 10mm 

diameter cylindrical rods of IN738LC by vacuum plasma spraying (VPS). The heat-treated specimens 

were smoothened and coated with an EB-PVD TBC. Cyclic oxidation of the coated specimens was 

performed in a vertical resistance heated furnace in laboratory air and in a H2O-containing low pO2 

model gas Ar-4%H2-2%H2O. The specimens were automatically moved into the hot furnace, kept at 

1100°C for 4 hours and then removed from the furnace to cool down to near room temperature (about 

50°C) for 1 hour per cycle. The cyclic oxidation experiments were terminated when macroscopic 

cracking or spallation of the TBC were observed.  

 

Fig 6.12 shows TBC-lifetimes during cyclic oxidation at 1100°C in air and in Ar-4%H2-2%H2O. For 

specimens with NiCoCrAlY bondcoat, the TBC lifetime was about 600 hours when exposed to air 

with an oxygen partial pressure (pO2) equal to 0.2 bar. The lifetime increased to about 1000 hours 

when the specimens were exposed in Ar-4%H2-2%H2O with an equilibrium pO2 of 2.2×10-14 bar at 
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1100°C. For the specimens with CoNiCrAlYZr bondcoat the TBC lifetimes were much shorter, i.e. 

only about 240 hours and there was no significant difference between lifetimes measured in air and 

Ar-4%H2-2%H2O. 

 

Fig 6.13a and b show that in the TBC-system with NiCoCrAlY (low Al) bondcoat homogeneous and 

uniform alumina-based TGO’s formed in both atmospheres. Occasionally, small inclusions of Y-

aluminates were found to be incorporated into the scale. Although the scale morphologies in air and 

Ar-4%H2-2%H2O were very similar, the scale thickness being significantly smaller in the latter 

atmosphere. After 300 hours of cyclic oxidation at 1100°C it was only about 3.5 μm in Ar-4%H2-

2%H2O compared to about 5 μm in air. Therefore, the difference in the TBC lifetime observed 

between air and Ar-4%H2-2%H2O could be related to differences in the oxide scale growth rate. It is 

also important to note that in both atmospheres the TBC’s with NiCoCrAlY bondcoat failed at the 

scale/bondcoat interface, similar to the observations made in chapter 6.1. 

 

Fig 6.13c and d shows cross-sections of failed TBC-specimens with CoNiCrAlYZr bondcoat after 

cyclic oxidation at 1100°C in air and in Ar-4%H2-2%H2O. The cross-sections were prepared in the 

specimen areas, where the TBC was macroscopically still intact. Contrary to the NiCoCrAlY (low Al) 

bondcoat which formed a flat and uniform TGO, the specimens with CoNiCrAlYZr bondcoat formed 

much thicker and inhomogeneous scales with oxide intrusions penetrating deep into the coating. The 

failure mode was also different, i.e. cracks propagating through the scale and at the TBC/TGO 

interface. Spinel formation on the oxide surface could initiate the crack formation at the TBC/TGO 

interface. Similar sites of crack formation for the TBC systems with CoNiCrAlYZr bondcoat could be 

found when the specimens oxidized in air and in Ar-4%H2-2%H2O. The oxygen partial pressure did 

not affect the crack initiation site. The similar morphology and growth rate of the oxide scales on 

CoNiCrAlYZr-bondcoat in Ar-4%H2-2%H2O and in air explain why the measured cyclic lifetimes are 

virtually independent of the test atmosphere composition.  
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Fig. 6.12 Lifetimes in hours at high temperature of EB-PVD-TBC’s on IN738 during cyclic 
oxidation (4h/1h) at 1100°C as a function of bondcoat composition and atmosphere 



43 
 

It can further be argued that the positive effects of high Co-content on the temperature stability of 

bondcoat microstructure which resulted in extended TBC-life observed earlier with Zr-free 

CoNiCrAlY-bondcoat (see previous section and references [25, 34]) are overcompensated in the 

present case by the rapid scale growth due to the minor addition of Zr. The rapid local scale growth 

resulted in encapsulation of parts of bondcoat by the oxide. After the Al was consumed from the 

isolated bondcoat parts, they were transformed into spinel, thereby providing ideal sites for crack 

initiation and propagation (Figs 6.13 c and d).  

 

Fig. 6.13 SEM Cross-sections of EB-PVD-TBC specimens with (a, b) NiCoCrAlY and (c, d) CoNiCrAlY+Zr 
bondcoats after cyclic oxidation at 1100°C in (a, c) air and (b, d) Ar-4%H2-2%H2O.  The specimens with 
NiCoCrAlY bondcoats oxidized for 300h, and with CoNiCrAlY+Zr bondcoats for 250h (failure). Gap in a 
and b formed during mounting and arrows indicate Y-aluminates in TGO
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The oxide scale thicknesses measured in cross-sections of specimens with NiCoCrAlY bondcoat after 

100 and 300 hours cyclic oxidation were extrapolated to obtain the TGO thickness at TBC-failure, 

similar as that shown in Fig 6.14. Assuming the common power law time dependence for the 

thickening rate [2], the estimated TGO thickness at failure was found to be approximately 6 μm in 

both atmospheres. This value can be considered as the critical scale thickness for the studied EB-PVD-

TBC system under the used temperature cycling conditions. It is apparently related to the critical 

amount of lattice strain energy stored in the oxide upon cooling due to thermal mismatch between the 

system components, i.e. TBC, alumina scale, bondcoat and superalloy [130]. The reason for the slower 

TGO-growth rate in the Ar/H2/H2O atmosphere is apparently related to the scale microstructure and 

growth mechanism, which is discussed below. 

The oxygen tracer distribution [67] in an alumina scale formed on a free standing NiCoCrAlY coating 

of similar composition as the bondcoat used in the present work clearly indicates oxygen diffusion 

along short-circuit paths as the predominant scale growth mechanism [131]. These short-circuit paths 

are most likely the oxide grain boundaries, similar to the observations made previously for FeCrAl-

base oxide dispersion strengthened (ODS) alloys [73] and FeCrAlY-type materials [132].  

 

Fig 6.15 showed an SEM In-Lens [29] image with a typical TGO-microstructure formed on the 

NiCoCrAlY bondcoat after 100 hours cyclic air oxidation at 1100°C. The grain size of the scale is 

seen to increase with increasing distance from the oxide/TBC interface. This scale microstructure is 

similar to that observed for FeCrAlY-alloys [132] and other EB-PVD TBC systems [133] and can be 

attributed to a competitive grain growth process.  

 

According to reference [132] the flux of oxygen JO across the scale can be written as: 

                                                                    (6.2) 
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Fig. 6.14 TGO thickness for EB-PVD-TBC specimens with NiCoCrAlY-bondcoat during cyclic oxidation 
at 1100°C. Extrapolation of measured to TBC-failure times according to common power law time (X=k�tn ) 
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where C is the concentration of the diffusing species; �o, the oxygen chemical potential; x, the distance 

from the scale/gas interface; R, the gas constant; and T, the oxidation temperature in Kelvin. Assuming 

grain boundary oxygen diffusion to control the oxide scale growth, the effective diffusion coefficient 

Deff can be written as [134]:  

                                                                         

                                                                                (6.3)  

 

and the oxygen chemical potential is given by  

                          

                                                                                        (6.4)  

where DGB is the grain boundary diffusion coefficient; �GB and r, the grain boundary width and grain 

size respectively; x is the distance from the scale/gas interface, μO
0 is the chemical potential of pure 

oxygen and pO2 is the oxygen partial pressure.  

 

The oxygen flux JO depends on the gradient in oxygen chemical potential (μo) according to equation 

(6.2). Due to very similar oxide scale morphologies on the NiCoCrAlY coating oxidized in air and Ar-

H2-H2O (Fig 6.13) as well as observations made for FeCrAlY-alloys [132] it is likely to assume that 

the growth mechanism is the same in both used atmospheres (i.e. inward grain boundary oxygen 

diffusion). The equation for the relationship between oxide scale thickness and oxygen potential 

gradient derived for FeCrAlY alloys is as follows [132]: 
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Fig. 6.15 SEM In-lens image of typical TGO-microstructure on NiCoCrAlY-bondcoat after 100 hours air 
oxidation at 1100° C. (Gap formed during mounting) 
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In the Ar-H2-H2O atmosphere the oxygen potential μo is much lower than that in air due to much lower 

oxygen partial pressure, in others words, the oxygen potential gradient 
μ within the oxide is lower in 

Ar-H2-H2O than in air. This results in a smaller oxygen flux across the scale and a slower TGO growth 

in Ar-H2-H2O than in air. The diffusivity of oxygen (DGB) along the grain boundaries in the alumina 

scale was shown to be for FeCrAlY alloys also lower in H2/H2O gas than in air. This was attributed to 

some less mobiles species, e.g. hydroxyl groups and/or water molecules as well as oxygen and 

hydrogen ions in the former atmosphere [132]. Fig 6.16a shows schematically the mechanism of scale 

formation with NiCoCrAlY-bondcoats in both atmospheres. 

 

For the Zr-doped CoNiCrAlY bondcoat, comparing with the NiCoCrAlY-bondcot, a different oxide 

scale microstructure and apparently a different scale growth mechanism are effective. The locally 

rapid scale growth on CoNiCrAlYZr coatings was manifested by the fact that frequently metal 

inclusions were observed in the oxide scale (Fig 6.17). Close to the original bondcoat surface, where 

the oxygen partial pressure was sufficiently high, these metal inclusions were found to transform 

gradually into spinel type oxide. These spinels could facilitate crack initiation and/or propagation in 

the TBC-system during cyclic oxidation [135].  

a) 

TBC 

Spinel Metal 

Cracks 

10μm

Fig. 6.17 SEM cross-sections of EB-PVD-TBC specimens with CoNiCrAlY+Zr bondcoat  after cyclic 
oxidation till failure for 250 h at 1100°C in a) air and b) Ar-4%H2-2%H2O 

b)

TBC

Spinel Metal 

Cracks 

10μm

Fig.6.16 Schematic of oxide scale formation on a) Y and/or b) Y+Zr doped MCrAlY-bondcoats in 
different atmospheres. Presence of TBC is neglected
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The high magnification SEM image in Fig 6.18 reveals that the alumina scales on the CoNiCrAlYZr-

bondcoat contained a large volume fraction of fine ZrO2-precipitates. Assuming the ZrO2 precipitates 

to be located at the alumina grain boundaries, the resulting scale microstructure is seen to be extremely 

fine-grained. The scale grain size in the inner part of the scale on the CoNiCrAlYZr-bondcoat 

estimated from Fig 6.18 is far less than 1 μm, contrary to the columnar grain microstructure observed 

on the NiCoCrAlY-bondcoat in Fig 6.15. Apparently the presence of finely distributed ZrO2 in the 

oxide scale on the CoNiCrAlYZr-bondcoat promotes rapid inward oxygen transport through the scale. 

This effect is partly due to the fine scale grain size, but mainly due to fast oxygen lattice diffusion in 

zirconia [136]. The rapid oxygen inward transport via a non-uniform network of short circuit paths can 

explain the waviness of the scale/metal interface and inclusion of metal particles into the scale.  

 

The observed scale microstructure would qualitatively explain why no significant difference in the 

scale thickness and morphology is seen on the CoNiCrAlYZr-bondcoat between Ar-4%H2-2%H2O 

and air exposures. The lower pO2 in the former atmosphere should lead to reduction in alumina growth 

rate, as it was the case for the NiCoCrAlY-coating. For the CoNiCrAlYZr-bondcoat, however, this 

effect is probably of only minor importance, since the oxygen transport in the scale does not occur via 

alumina grain boundaries but rather via virtually continuous zirconia pathways (Fig 6.18). The oxygen 

diffusivity in zirconia is much larger than that in alumina and the major point defects are considered to 

be oxygen vacancies [136-137]. The process of oxygen vacancy formation is represented by the 

equation:  

                                                                                                                                  (6.6) 
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Fig.6.18 SEM cross-section of EB-PVD-TBC specimen with CoNiCrAlY+Zr bondcoat after 
cyclic oxidation till failure at 1100°C in air for 250h. Arrows indicate metal particles and ZrO2 
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in which !
oO  is an oxygen ion on a regular lattice site,   

oV is an oxygen vacancy, 'e is a negatively 

charged electron. 

 

Considering oxygen vacancies in zirconia being the predominant defects, the corresponding 

expression for the oxidation rate kp is :     
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The values of oxygen partial pressure at the scale/gases interface equal 0.2 bar for Ar-O2, and 10-14 bar 

for Ar/H2/H2O, respectively. The pO2 at the scale/metal interface can be estimated from 

thermodynamic equilibrium of the reaction: 

                                                            3222
32 OAlOAl ��                                                       (6.8) 

 

For unit Al-activity pO2 can be calculated [5] at 1100°C to be 10-28 bar. Even if the Al-activity is much 

lower the resulting scale/metal interface pO2 is still very low, e.g.  pO2�10-23 bar for aAl=10-4. It can be 

seen that for ideal example pO2(scale/metal) is much smaller than pO2(scale/gas). Then, according to 

equation (6.7), the oxide scale growth rate kp is in a large range of oxygen partial pressures 

independent of the pO2 in the environment.  

 

Of a particular interest is the mechanism of Zr-incorporation into the alumina scale. Considering 

similar thermodynamic stabilities of zirconia and alumina, as well as high Zr-diffusivity and low 

oxygen permeability for FeCrAl Y+Zr co-doped alloys it was proposed [138] that zirconia precipitates 

are nucleated at or just below the scale/metal interface, which become almost immediately embedded 

into the inward growing scale. It is important to note that for the Zr-doped FeCrAlY-alloy studied in 

[138] slower oxidation rate was observed in H2/H2O atmosphere compared to Ar-O2. In contrast in the 

present work the oxide scale thickness on the Zr-doped CoNiCrAlY bondcoat are very similar in both 

atmospheres. The reason for this effect can be much higher Zr-content in the latter material (0.6 wt%) 

compared to only 0.03 wt% in the FeCrAlYZr-alloy. Other possibilities indicate faster diffusion of Zr 

and/or O in the CoNiCrAlY compared to FeCrAlY, but the exact values are not available in literature. 

 

It should be noted that the effect of minor Zr-additions on the bondcoat performance cannot in general 

be considered as negative. The short TBC-lifetime observed in the present investigation is a result of 

so-called “scale overdoping” with Zr [139]. This is due to a high Zr-content (0.6 mass %) in the 

presently studied bondcoat, resulting in a large Zr-reservoir, i.e. a large amount of Zr available for 

incorporation into the oxide scale. It is shown in section chapter 6.2 that for bondcoats with an 

optimized, smaller Zr-reservoir, e.g. due to a lower Zr-content, the TBC-lifetime can be extended 
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compared to Zr-free bondcoats. The latter observation was related to the fact that the location for 

initiation of TBC-failure was shifted from the scale/metal to the TBC/scale interface. It is recognized, 

however, that an optimum Zr-reservoir, which depends not only on the Zr-content but also on the 

oxygen and carbon contents, as well as bondcoat thickness [34], might be difficult to control in a large 

scale coating manufacturing process because of inevitable variations in the processing parameters, 

such as vacuum quality during VPS and heat-treatment, extent of coating smoothening, etc.  

 

Furthermore, comparison of the latter results with those above presented in chapter 6.2 indicates that 

the effect of Zr on oxide scale formation and associated TBC-lifetime strongly depends on the 

operating (testing) conditions, such as oxidation temperature and temperature cycling. At higher 

temperatures, e.g. 1100°C as used in the present study, the Zr-incorporation into the scale is rather 

rapid. In contrast, at 1000°C, which is closer to the real bondcoat operation temperature, the Zr-

diffusion in direction of the scale from the bondcoat bulk is more sluggish. Consequently, at 1000°C 

the lifetime of TBC’s on Zr-doped MCrAlY-bondcoats was found to be extended compared to a 

system with Zr-free bondcoat of similar main composition, whereas no significant life extension was 

observed at 1100°C. The degree of TBC-lifetime extension by Zr-doping of the bondcoat at lower 

temperatures was, however, found to depend on the temperature cycling parameters which were 

discussed in chapter 6.2. The improvement was less pronounced for testing with 2 hour high-

temperature dwells, due to faster crack propagation and coalescence in the scale compared to long 

(166 hour) high temperature dwells. 

6.3.2 Effect of water vapor on lifetime of EBPVD-TBC systems with NiCoCrAlY bondcoats in 
atmospheres with high oxygen partial pressure 

 In the previous chapter the oxidation behavior of EB-PVD TBC systems in H2O-containing, low pO2 

environments was studied. However, real gas turbine service environments typically have a high 

oxygen partial pressure because the combustion occurs with excess oxygen. Furthermore, as 

mentioned in the introduction, gas turbines in IGCC power plants will be operating using H2-rich fuels, 

with a consequence that the combustion products will have much higher H2O-contents. Therefore in 

the present work a comparison of lifetime for EB-PVD TBC systems with MCrAlY bondcoat in air 

and air+20%H2O during discontinuous oxidation at 1050°C was performed. Fig 6.19 shows that 

higher water vapor content in the atmosphere significantly shortened the lifetime of the studied EB-

PVD TBC systems. 

 

Cross-sections of the failed specimens are presented in Fig 6.20 and 6.21 for laboratory air and 

laboratory air+20%H2O exposures, respectively. It can be seen that in all cases failure occurred by 

crack propagation at the TGO/bondcoat interfaces observed commonly for EB-PVD TBC systems 

with MCrAlY bondcoats [91]. 
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For the air exposures the absolute values of the lifetimes are different for the various bondcoats and no 

obvious correlation with the bondcoat composition can be made. One of the possible reasons for the 

large lifetime variations can be the variation in the RE-reservoir and consequently of the TGO-

adherence. It was found in previous work [67] that the lifetime of the EB-PVD TBC systems with the 

studied bondcoats exhibited significant variations even within one specimen batch. This was attributed 

to a varying RE-reservoir established by conventional bondcoat-processing, i.e. vacuum plasma 

spraying of the bondcoat followed by high temperature vacuum heat-treatment and smoothening of the 

sample surfaces by a media finishing process. Each of the processing steps could in principle change  

Fig. 6.19 Lifetime of EB-PVD TBC systems with NiCoCrAlY BC  after discontinuous oxidation 
(167h/cycle) at 1050°C in air and air+20%H2O. High-Y BC: NiCoCrAlY (low Al) with 0.6 wt% Y; 
Low-Y BC: NiCoCrAlY (low Al) with 0.3 wt% Y; Gamma BC: NiCoCrAlY (low Al) bottom layer + 
Gamma NiCoCrAl (upper) layer ; Beta BC: NiCoCrAlY (low Al) bottom layer + Beta upper layer 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

T
B

C
 L

ife
tim

e,
 h

Air

Air+20%H2O

Fig. 6.20 Cross-sections of EB-PVD TBC systems with NiCoCrAlY BC after discontinous oxidation 
till failure in air at 1050°C,  and a) NiCoCrAlY (high Y),  b) NiCoCrAlY (low Y), c) NiCoCrAlY+ 
Gamma,  d)NiCoCrAlY+Beta  
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the distribution of RE. The RE addition, e.g. Y can be oxidized during the VPS coating process as well 

as on the coating surface during vacuum heat-treatment. The surface smoothening not only removes 

the Y-rich oxides formed during vacuum heat-treatment but also reduces the coating thickness, 

resulting in a further reduction of the RE-reservoir. The difference in the RE-reservoir can result as a 

consequence in significant differences in the oxide scale adhesion between different samples, which 

might explain why the TBC failure occurred at very different TGO-thicknesses.  

 

In spite of significant lifetime variations of EB-PVD TBC systems with different bondcoats, the 

absolute lifetime values for all systems studied are much longer when tests are performed in laboratory 

air as compared to laboratory air with 20%H2O. This result indicates that water vapor promoted TBC 

failure to occur at a much smaller critical TGO thickness as compared to a drier environment. A 

possible reason for this effect is likely enhanced spallation of the alumina scales in presence of 

moisture, as proposed by other authors [110, 112]. It is important to note that the mechanism proposed 

in reference [110, 112] to explain the H2O-effect on scale spallation (hydrogen embrittlement of the 

TGO/bondcoat interface, H being produced by reaction between H2O and Al) implies H2O access to a 

poorly intact scale/metal interface. It was observed that the extent of the H2O effect on the alumina 

scale spallation from Ni-base superalloys was much stronger for alloys with higher S-content, which 

exhibited a more extensive scale spalling, than alloys with low sulfur in the dry atmosphere [112]. 

Combing the observation from [112] with those in the present work it can be speculated that the oxide 

scale adherence in the studied TBC-systems was not optimum probably due to significant and non-

uniform RE-reservoir depletion from the bondcoats during processing as described above.   

High Y, 831h 

a) b) 

Low Y, 831h 

Gamma, 831h Beta, 475h 

c) d) 

Fig. 6.21 Cross-sections of EB-PVD TBC systems with NiCoCrAlY BC after discontinous oxidation till 
failure in air+20%H2O  at 1050°C,  and a) NiCoCrAlY (high Y),  b) NiCoCrAlY (low Y), c) NiCoCrAlY+ 
Gamma,  d)NiCoCrAlY+Beta  
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6.4 General discussion of findings with EB-PVD TBC systems with MCrAlY 
bondcoats  

The lifetime of EB-PVD TBC specimens with CoNiCrAlY bondcoat was longer than that with 

NiCoCrAlY (high Al) bondcoat during cyclic oxidation in air at 1100°C. This can be attributed to a 

lower CTE for the Co-rich bondcoat. Slower cooling rates and longer dwell times at low temperature 

with the same hot dwell time were found to shorten the lifetime of EB-PVD TBCs with Co-rich as 

well as Ni-rich bondcoat. 

 

The lifetime of EB-PVD TBC systems with conventional NiCoCrAlY bondcoats was comparable after 

cyclic and discontinuous oxidation in air. The critical TGO thickness played a critical role in 

determining the crack propagation at the TGO/ bondcoat interface. This could be illustrated by 

experiments in a low-pO2 gas. The growth rate of TGO’s formed in TBC systems with conventional 

MCrAlY bondcoat was slower in low pO2 environments due to a smaller oxygen flux across the scale 

induced by the lower oxygen chemical potential in the atmosphere as compared to high pO2 gas. 

Therefore, the TBC life was longer in H2/H2O atmosphere with a low oxygen partial pressure than in 

air because a longer time was required to reach the critical oxide scale thickness for TBC-failure. The 

EB-PVD TBC lifetime was mainly controlled by the time for reaching a critical oxide thickness and 

was not significantly affected by the temperature cycling frequency. 

 

The TBC systems with Zr-doped MCrAlY bondcoat exhibited a longer lifetime after discontinuous 

oxidation compared to cyclic oxidation. The life of the TBC on Zr-doped MCrAlY bondcoat during 

the discontinuous test was also longer than that with the Zr-free bondcoat. Oxygen diffusion through 

short-circuit paths (ZrO2 precipitates) in the TGO promoted internal oxidation and formed an 

inhomogeneous TGO/bondcoat interface. Therefore, it was impossible to define a critical TGO 

thickness related to TBC failure as in the above case of the conventional MCrAlY bondcoat. The low 

pO2 in H2/H2O gas had no clear effect on the TGO growth rate and TBC lifetime because the O-

diffusivity in ZrO2 appeared to be virtually independent of pO2.  

 

The lifetime of TBC’s with Zr-containing bondcoat strongly depended on exposure conditions e.g. 

temperature and cyclic frequency. The crack formation and propagation for the case of the Zr-doped 

bondcoat occurred within the thick TGO as well as at the TBC/TGO interface. In spite of formation of 

a thick TGO in the TBC system at high temperature an immediate TBC failure did not occur during 

the oxidation. However, the lifetime of the TBC-system with Y+Zr bondcoat was significantly shorter 

in the cyclic than in the discontinuous test, although it was still about 50% longer than that of the 

system with conventional Zr-free bondcoat. The latter effect can be related to a more rapid 

propagation of cracks in the TGO and at the TGO/TBC interface with using high frequency thermal 

cycling. 
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The water vapor rich atmosphere with high oxygen partial pressure appeared to be detrimental for the 

lifetime of EB-PVD TBC with NiCoCrAlY bondcoats. The moisture-induced delayed spallation [110] 

could be an operating mechanism negatively affecting the Al2O3 scale adhesion.   
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7 Parameters affecting lifetime of APS TBC systems with 
MCrAlY bondcoats 

7.1 General Remarks 

Although EB-PVD TBC systems show high resistance against temperature cycling, one of the 

drawbacks for their more extensive use is the relatively high manufacturing cost. APS-TBC systems 

are nowadays used by most of the OEM’s producing industrial gas-turbines. The advantages of APS-

TBC’s include lower manufacturing costs and lower thermal conductivity than EB-PVD TBCs. The 

APS-TBC systems are also claimed to be more resistant against penetration and attack of corrosive 

species such as calcium–magnesium–aluminum-silicate (CMAS). Therefore, in this section the 

parameters affecting the TGO formation and lifetime of APS-TBC systems with MCrAlY bondcoats 

are presented 

7.2 Effect of Co and Ni contents in MCrAlY bondcoats on lifetime of APS TBC 
systems 
Previous studies with EB-PVD TBC systems [25] as well as those in the present investigation in 

Fig.7.1 Optical metallographic cross-sections of  as-received APS-TBC’s with MCrAlY bond coats on IN738 
alloy:  a) and c) NiCoCrAlY (low Al) BC; b) and d) CoNiCrAlY BC; a) and b) show systems with high 
density TBC and dense BC; c) and d) the systems with low density TBC and porous BC 

a)  

High density TBC and dense BC 

b)  

c) 

Low density TBC and porous BC 

d) 

NiCoCrAlY (low Al) 

NiCoCrAlY (low Al) 

CoNiCrAlY   
CoNiCrAlY  
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chapter 6.1 have shown that their lifetime is longer when using CoNiCrAlY bondcoats compared to 

NiCoCrAlY bondcoats. This difference was attributed to the stabilization of two-phase � + � coating 

microstructure by Co, resulting in reduction of the CTE of the coatings. Therefore, in the present 

investigation a study has been undertaken to check whether a similar positive effect of Co additions to 

the bondcoat on the lifetime also occurs in the case of APS-TBC systems. It is well known from 

literature that the measured cyclic oxidation lifetimes of APS-TBC systems are significantly affected 

by the microstructure of the bondcoat as well as topcoat [34]. Consequently, TBC systems were 

produced with substantial differences in the coatings microstructures as shown in Fig 7.1. The 

parameters varied were bondcoat roughness profile and porosities of TBC and bondcoat. In this 

experiment, the NiCoCrAlY (low Al) and CoNiCrAlY bondcoats deposited on IN738 superalloy were 

used to investigate the effect of the parameters on lifetime of APS-TBC’s. For proprietary reasons the 

TBC-lifetimes in this chapter are given as relative values in arbitrary units (a.u.). These relative 

lifetimes were calculated by dividing the measured TBC-lifetimes in hours at high temperature by a 

constant. 

7.2.1 Coating systems with high density APS TBC and dense bondcoats  

 Fig. 7.2 shows the lifetime data of studied APS-TBC systems after 2h/15min cyclic oxidation in air at 

1100°C and 1050°C. At 1100°C the lifetimes of systems with CoNiCrAlY bondcoat was 

approximately twice as long as those with NiCoCrAlY (low Al) bondcoat. At 1050°C the average 

lifetime of the specimens with CoNiCrAlY bondcoat was about 1500h, which was longer by a factor 

of three than that with the NiCoCrAlY (low Al) bondcoat.   

 

After cyclic oxidation in air at 1100°C the failure modes were similar for the TBC systems with 

NiCoCrAlY (low Al) and CoNiCrAlY bondcoats (Fig 7.3). In both conditional cases, the cracks could 

be found within the TBC close to the interface with the bondcoat. Apparently, the cracks initially 

formed at the peaks of the bondcoats surface, and then the cracks propagated through the TBC (Fig 

Fig.7.2 Lifetime of high density APS-TBC’s with dense MCrAlY bond coats on 
IN738 alloy after 2h/15min cyclic oxidation in air at 1100°C and 1050°C 
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7.4). Finally, crack coalescence occurred, which could lead to macroscopic TBC failure. Based on the 

similarities in failure mode between the two TBC systems it can be argued that lower CTE of the 

CoNiCrAlY bondcoat compared to NiCoCrAlY (low Al) bondcoat was one of major factors that 

determined the longer lifetime of the system with the former bondcoat.  

 

Fig 7.5a shows the SEM cross-section of APS-TBC systems with NiCoCrAlY (low Al) bondcoat after 

b) a) 

Fig.7.3 Optical metallographic cross-sections of  failed APS-TBC’s with MCrAlY BCs on IN738 alloy 
after 2h/15min cyclic oxidation at 1100°C in air, a): NiCoCrAlY BC, 324h , b): CoNiCrAlY BC, 720h  

a)

Fig.7.5 Cross-sections of APS-TBC’s with MCrAlY BCs on IN738 alloy after 2h/15min cyclic 
oxidation at 1100°C in air, a) NiCoCrAlY (low Al), 100h and b) CoNiCrAlY, 720h  

10�m 

b)

Fig 7.4 SEM image of APS-TBC system with CoNiCrAlY BCs on IN738 alloy after 2h/15min cyclic 
oxidation at 1100°C in air till TBC failure for 720h. The arrows point out the cracks formed at peaks of the 
bondcoat system  

:Cracks 50�m 

gap 
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100h cyclic oxidation at 1100°C in air. The oxide scale on the bondcoat mainly consists of alumina. 

There were virtually no Y-rich oxides in the scale on NiCoCrAlY (low Al) bondcoat due to a 

relatively small Y reservoir in the coating (the Y-content in NiCoCrAlY (low Al) is about 0.3%).    

However, the Y-rich oxides could be found in the specimens with CoNiCrAlY bondcoat (Fig 7.5b). 

The high Y-content (about 0.6% Y) in the CoNiCrAlY bondcoat caused the formation of Y-aluminates 

in the TGO. The Y-rich oxides are found only in the outer part of TGO on the CoNiCrAlY bondcoat. 

The absence of the Y-aluminates in the inner part of the TGO is apparently due to depletion of Y from 

the bondcoat after the extended oxidation time for the formation of Y-aluminates, as described 

elsewhere [98]. The TGO located at the convex parts of the bondcoat contained less Y-rich oxides 

than the concave parts. This effect was shown by Gil et al. [46] to be related to faster Y-depletion 

underneath convex bondcoat surfaces with a large volume to surface ratio compared to the concave 

surfaces. It should be noted that the high Y-content in the CoNiCrAlY bondcoat alone can not explain 

a longer TBC lifetime compared to that on the NiCoCrAlY bondcoat. It is evident from Fig 7.4 and 

7.5b that the TBC-failure occurred after the Y had been largely depleted from the bondcoat. This 

argument is also supported by the observation of M.Subanovic [67] who found that the Y content in 

VPS MCrAlY bondcoats had no major effect on the thermal cyclic lifetime of APS TBC’s. Therefore 

it is believed that a lower CTE of the CoNiCrAlY bondcoat compared to that of the NiCoCrAlY (low 

Al) bondcoat made the most significant contribution to the longer lifetime of the TBC, which is 

supported by the previous discussion on EB-PVD TBC systems in chapter 6.1.  

7.2.2 Coating systems with low density APS TBC’s and porous bondcoats  

The low density APS TBC systems with porous NiCoCrAlY (low Al) and CoNiCrAlY bondcoats on 

IN738 superalloy were tested under 2h/15min cycles at 1100°C and 1050°C in air. The lifetime data 

are shown in Fig 7.6. Contrary to the lifetime of high density TBC’s shown in Fig 7.2, the lifetime of 

the TBC system with porous NiCoCrAlY bondcoat exhibited a lifetime which was by about 20% at 

1100°C and 15% at 1050°C, than observed for the CoNiCrAlY bondcoat.  

Fig. 7.6 Lifetime of low density APS-TBC’s with porous MCrAlY bond coats on 
alloy IN738 after 2h/15min cyclic oxidation in air at 1100°C and 1050°C 
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The oxide scale morphologies can be observed in Fig 7.7 showing the cross-sections of the low-

density TBC with the two porous bondcoats. It can be noted that the surfaces of pores in the  

upper part of the bondcoats were oxidized. Apparently, the pores which were present in the as-

received bondcoats (Fig 7.1) had partly a direct contact to the bondcoat surface allowing rapid oxygen 

penetration. Fig 7.8 shows the high magnification pictures of cross-sections of the specimens with the 

two studied bondcoats. Repeated cracking within the oxide scale could be observed in Fig 7.8a for the 

specimens with NiCoCrAlY (low Al) bondcoats which is a different crack morphology compared to 

the dense bondcoat in the chapter in 7.2.1 (Fig 7.4). In the convex parts of the bondcoat roughness 

profile the TGO is very thick, consisting of several layers, whereas cracks run parallel to each other 

Fig. 7.8  SEM images of  failed APS-TBC’s with MCrAlY bond coats on alloy IN738 after 2h/15min 
cyclic oxidation at 1100°C in air, a): NiCoCrAlY (low Al), 828h, showing repeated cracking within 
the TGO;  b): CoNiCrAlY, 594h, showing spinel formation and cracking in the outer part of BC 

Spinel 

b) 
20�m 

a) 
20�m 

Repeated cracking

Fig. 7.7  SEM images of  failed APS-TBC’s with MCrAlY bond coats on alloy IN738 after 2h/15min 
cyclic oxidation at 1100°C in air, a): NiCoCrAlY (low Al), 828h , b): CoNiCrAlY, 594h. The arrows 
point to the internal oxides formed in the pores near the coating surface 

b) 100�m 

a) 100�m 
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within the TGO. Such repeated cracking morphology can be an indication of the extended TBC 

lifetime as will be discussed in the next chapter. For the system with CoNiCrAlY bondcoat in Fig 7.7b 

and 7.8b, spinel phase oxidation could be found on the surface of the alumina scale, which could be 

one of the reasons for a relatively short TBC lifetime shown in Fig 7.6. The detailed reason for such 

morphologies, e.g. repeated cracking for NiCoCrAlY (low Al) and spinel formation for CoNiCrAlY 

bondcoat, will be discussed in the next chapter.  

 

Porosity formation at bondcoat/alloy interfaces for both MCrAlY coatings, is shown in Fig 7.9. There 

are more pores formed at the CoNiCrAlY/alloy interface after nearly 600 h exposure than at the 

NiCoCrAlY/alloy interface after more than 800 h oxidation. In the as-received condition (Fig 7.10a 

and b), some alumina particles can be observed at the bondcoat/alloy interface. These particles 

apparently originate from the specimen alloy surface preparation (grit blasting) prior to bondcoat 

deposition. The porosity (Fig 7.10 c and d) at the bondcoat/alloy interface increased for both coatings 

during oxidation for 300h at 1050°C. The Kirkendall effect probably played an important role for the 

formation of pores due to non-equal fluxes of diffusing elements e.g. Ni, Co, Cr, and Al. However, 

much more pores formed at the CoNiCrAlY bondcoat/alloy interface could be observed after shorter 

time in Fig 7.9b. The latter phemonon is probably related to the formation of �-NiAl and carbides 

precipitates next to the pores on the side of superalloy (Fig 7.10d). Much more Cr and Co could 

diffuse into the base superalloy due to higher Cr and Co contents in case of the CoNiCrAlY compared 

to the NiCoCrAlY (low Al) bondcoat (see Table 5.2) during high temperature exposure. The higher 

Cr-content in the case of the CoNiCrAlY bondcoat is likely to promote the Cr-carbide formation (in 

Fig 7.10d) and also increases the Al activity in the coating thereby promoting its diffusion into the 

base alloy. The most important effect of Co is believed to be the stabilization of the �-phase in the 

NiCoCrAlY (low Al) coating 

Alloy 

Pores 

a) 

Alloy 

CoNiCrAlY coating 
Pores 

100�m b) 

Fig. 7.9 SEM images of the porosity at the MCrAlY BC/IN738 alloy interface, failed APS TBC after 
2h/15min cyclic oxidation at 1100°C in air, a): NiCoCrAlY (low Al), 828h ;  b): CoNiCrAlY, 594h 
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interdiffusion zone formed between IN738 and the CoNiCrAlY bondcoat. Formation of �-NiAl and 

the carbide phase apparently induced a considerable volume change in the interdiffusion zone [35] 

which finally resulted in enhanced formation of porosity at the bondcoat/alloy interface. It should be 

pointed out that the reverse � to � phase transformation occurred after extended time due to continuous 

elements interdiffusion, whereby no � phase precipitates could be found for the failed TBC system 

after nearly 600h oxidation at 1100°C (Fig 7.9b).     

7.2.3 Effect of bondcoat and TBC microstructure on lifetime of APS TBC systems  

The above presented results indicate that significant TBC-lifetime extension was obtained with 

CoNiCrAlY bondcoat compared to NiCoCrAlY in the TBC-systems with dense TBC and bondcoat. In 

contrast, with low density TBC and porous bondcoat the TBC lifetime was even slightly shorter with 

the CoNiCrAlY compared to the NiCoCrAlY coating. It is clear, therefore, that the TBC and bondcoat 

microstructures play a crucial role in governing the TBC-system lifetime. To evaluate the effect of 

TBC and bondcoat microstructure on the lifetime of the TBC system, detailed analytical studies of the 

samples were performed in the as-received condition as well as after oxidation. In addition, a TBC-

system was studied, which had a dense NiCoCrAlY (low Al) and a porous TBC to separate the effects 

of TBC and bondcoat microstructures on the system lifetime.  

7.2.3.1 NiCoCrAlY(low Al) bondcoat  

The lifetimes of the APS TBC-systems with NiCoCrAlY (low Al) bondcoats at 1050°C and 1100°C 

are summarized in Fig 7.11. At 1050°C the system with dense TBC and dense bondcoat showed the 

a)  b) 

c)  

�-NiAl 

Carbide d) 

Fig 7.10 Metallographic cross-sections of as-received a) NiCoCrAlY (low Al) BC and b) CoNiCrAlY 
BC/superalloy interface as well as after oxidation at 1050°C in air for 300h, c) NiCoCrAlY (low Al); 
d) CoNiCrAlY 

Bondcoat Bondcoat 

alloy alloy 

Corundum particle 

Corundum particle 
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shortest lifetime among the TBC systems studied. The system with porous TBC and porous bondcoat 

showed a nearly 4 times longer lifetime than that of the specimens with dense coatings. The system 

with porous TBC and dense bondcoat showed a lifetime which was longer only by a factor of two 

compared to the TBC system with dense coatings. A qualitatively similar lifetime trend for the above 

three TBC systems  could be also observed at 1100°C.  

Fig. 7.12 Optical metallographic cross-sections for the three different TBC systems with NiCoCrAlY  (low 
Al) bondcoat after failure (2h/15min cyclic oxidation in lab air at 1100°C):  a) dense TBC and BC, b) porous 
TBC and BC, and c) porous TBC and dense BC 
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Fig 7.11 Lifetimes of the TBC systems with NiCoCrAlY (low Al) bondcoats after 2h/15min  
cyclic oxidation in air at 1050°C and 1100°C  
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In Fig 7.12, the metallographic cross-sections illustrating the TBC failure modes of the three above 

mentioned TBC systems are summarized. For the system with dense TBC and bondcoat, a “classical” 

failure mode can be observed [111] i.e. the cracks form at the TGO/bondcoat interface, on hill at the 

bondcoat surface and then grow in the TBC until occurrence of macroscopic failure. In contrast in the 

system with low density TBC’s and porous bondcoat the crack path is substantially more complex 

than that in the dense TBC system. In many places a very thick and severely cracked TGO is observed, 

which is, however, still in contact with the bondcoat surface. For the specimen of porous TBC with 

porous bondcoat, the outer part of the bondcoat included some voids with oxidized surfaces. The 

systems with porous TBC and dense bondcoat exhibited a similar TGO morphology compared to the 

dense TBC system (Fig 7.12c). Fig 7.12 also shows that �-NiAl phase still could be found at the center 

of the bond coatings after TBC lifetime indicating that in all cases Al-depletion was not the reason for 

TBC-failure. According to the lifetime data in Fig 7.11, the microstructure of the porous NiCoCrAlY 

bondcoat provided a beneficial effect on the TBC life; the possible mechanisms responsible for this 

effect will be discussed below.  

 

The dense NiCoCrAlY bondcoat formed a uniform alumina scale on its surface (Fig 7.13a). The 

cracks initiated in the convex parts of the coating surface (Fig 7.13a and c).  

 

During cooling of an APS-TBC system exposed to high-temperature oxidizing environment, high 

compressive out-of-plane stresses are generated at the TGO/bondcoat interface concave parts of the 

rough bondcoat surface, which prevents TGO spallation. In the convex parts of the rough surface, 

Fig 7.13  Cross-sections of  failed APS-TBC’s with NiCoCrAlY (low Al) bond coats on IN738 alloy after 
2h/15min cyclic oxidation at 1100°C in air, a) and c): dense TBC and BC, 324h , b) and d): porous TBC and 
BC, 828h  
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however, tensile out-of-plane stresses will build up the TGO/bondcoat interface. The TGO thickness 

and the radius of curvature govern the stress value. These tensile stresses promote crack initiation at 

the TGO/bondcoat interface, as shown in Fig 7.14a. The resistance of the interface to TGO 

delamination depends on the TGO adhesion and the stress value. When the cracks at the hill of the 

coating propagate along the roughness profile, the shear stress in the TGO would increase with the 

tensile stress decreasing. The alumina scale fracture occurs when the shear stress reaches a critical 

value which depends on the TGO mechanical properties. Subsequently, the crack penetrates the TGO 

and enters the TBC. The rate of crack propagation through the TBC depends strongly on its 

microstructural properties. In the case of the dense TBC system, the rate of crack growth is higher than 

in the other two systems, since there are less microstructural defects in the TBC, such as pores or 

microcracks to dissipate the energy available for fracture at the crack tip. 

 

The system with dense bondcoat and porous TBC is more “strain-tolerant” than the dense TBC system 

because the TBC contains a larger number of defects, thereby effectively reducing the crack growth 

rate. As a consequence, a longer lifetime is measured with the former system in a thermal cyclic test. 

For the system with porous TBC and porous bondcoat, however, the situation is different. One 

significant difference compared to the other two systems is the observed layered morphology of the 

TGO at bondcoat “hill”. The mechanism of the formation of the layers can be derived from Fig 7.15. 

The columnar oxide microstructure, which is a typical characteristic for the inward growth of the 

alumina scale, could be observed for each of the separate TGO layers. This observation indicates that 

the formation of separate TGO-layers occurred independently and each layer formed on a fresh metal 

surface, rather than parallel cracks were initiated in the TBC and then propagated via defects in the 

thick alumina scale.  

 

It is therefore obvious, that the bondcoat surface morphology and/or micro-structure have a substantial 

impact on the TBC-lifetime. To understand the effect of microstructures of dense and porous coating 

systems on the TBC life, some coating parameters are summarized in Table 7.1, which were derived 

using image analysis of the TBC system cross-sections. The root-mean-square (RMS) roughness is 

defined as the average height of the bond coating surface relative to the mid-section, and the tortuosity 

Fig 7.14 Schematic illustrating different crack growth and propagation modes in different APS TBC 
systems, a) dense TBC and BC; b) porous TBC and BC 
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(L/L0) is the length of the digitized profile (L) of the bondcoat rough surface divided by the length of 

the cross-section window. Fig 7.16 shows the profiles of the dense and porous bondcoats. It can be 

clearly seen that the roughness of the porous bondcoat is significantly higher than that of the dense 

bondcoat.  

Types Porosity of TBC 
Bondcoat surface 

roughness (RMS), �m 

Bondcoat surface 

tortuosity (L/L0) 

Dense TBC and BC 7-8% 13 1.43 

Porous TBC and BC 9-14% 22 1.98 

Fig 7.15 In-Lens SEM-image of the repeated TGO cracking during cyclic oxidation at 1050°C 
in APS-TBC system with NiCoCrAlY (low Al) bondcoat 

2�m 

Table 7.1 Microstructural parameters of studied TBC systems derived from metallographic cross-
sections using image analysis software analySIS® 

            Fig. 7.16 Bondcoat surface roughness profiles digitalized for as-received dense and porous TBC systems  
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Based on the comparison of roughness profiles it can be argued that the bondcoat surface of the porous 

bondcoat exhibits a more convoluted morphology than the dense bondcoat. This micro-roughness 

results in crack initiation in locations at different heights with respect to the mid-section. Consequently, 

the coalescence of these growing cracks is a slower process, as compared to a more uniform roughness 

profile. This in turn allows formation of the observed repeated cracking of the TGO (Fig 7.8). These 

considerations are illustrated schematically in Fig 7.14b. Another possible reason for the slow crack 

growth in the TBC and repeated cracking of TGO can be bondcoat porosity. The outer bondcoat areas 

with oxidized pores can perhaps serve as a graded layer having a lower CTE compared to the bulk of 

the coating resulting in a reduction of stress generated by CTE-mismatch between BC and TBC.  

 

Fig 7.17 summarizes schematically the effect of various microstructural parameters on the crack 

propagation and lifetime of the APS-TBC systems The time dependence of crack length is 

substantiated by experimental results previously published by Trunova et al [140]. The porous TBC 

systems show a slower crack growth rate resulting in lifetime extension as compared to the dense TBC 

system. The porous bondcoat could further extend the TBC life by modifying the crack initiation 

pattern in the TBC and/or by reducing the effective bondcoat coefficient of thermal expansion as 

discussed above.  

 

It should be noted that very-dense TBC’s (porosity below 7%) with compact bondcoat exhibited at 

1100°C a shorter lifetime, about 100h, compared to the above three TBC systems after 2h/15min 

cyclic oxidation in air. Fig 7.18a shows the cross-sections of the as-received specimens, of which the 

TBC exhibited a very high density that was even higher than that of the discussed above dense TBC 

system. In Fig 7.18b, the parallel and vertical cracks within the APS TBC could be found when the 

specimen failed, whereas the TGO showed a good adherence to the bondcoat/TGO/TBC interface. 

Fig. 7.17 Schematic of the rates of crack formation and propagation for the APS-TBC 
systems with NiCoCrAlY BC during cyclic oxidation in air, l*: critical crack length 
leading to occurrence of macroscopic TBC-failure after time t* 
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These observations point out that the failure of very-dense TBC’s was not directly associated with 

bondcoat oxidation. The crack formation in the TBC is mainly associated with the strain energy 

accumulated within the ceramic top coat during cyclic oxidation, especially during cooling. The early 

TBC failure which occurs in the ceramic top coat above the bondcoat is an indication of an extremely 

low strain-compliance of the very dense TBC although there were perhaps some small cracks also 

formed in the TGO. 

 

7.2.3.2 CoNiCrAlY bondcoat  

The lifetime data of the APS TBC with CoNiCrAlY bondcoats after cyclic oxidation are summarized 

in Fig 7.19. The lifetime of the dense TBC systems with dense bondcoat was about 1500h, which is 

comparable with that of porous TBC and bondcoat systems at 1050°C. The lifetime of both TBC 

systems was about 700h at 1100°C, which is only half of that at 1050°C. These lifetime data illustrate 

that the porous TBC with CoNiCrAlY bondcoat are not longer than the TBC lifetimes observed in the 

case of NiCoCrAlY (low Al) coating. 

Fig 7.19 Lifetime of TBC systems with CoNiCrAlY bondcoats after 2h/15min cyclic 
oxidation in air at 1050°C and 1100°C 
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Fig. 7.18 Optical metallographic images of very-dense APS-TBC system with NiCoCrAlY (low Al) 
BC on IN738LC, a) as-received; b) after 2h/15min cyclic oxidation for 100h at 1100°C in air 
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SEM Cross-sections of the system with dense TBC and dense CoNiCrAlY bondcoat (Fig 7.20a) 

showed that cracks formed in the convex parts of TGO/ bondcoat interface while then penetrated into 

the TBC. The failure mechanism is similar to that discussed for dense NiCoCrAlY bondcoat (see Fig 

7.14a). Internal oxidation and cracks can be found at the surface of the porous bondcoat in Fig 7.20b. 

The typical repeated cracking, which was observed for the porous NiCoCrAlY (low Al) bondcoat in 

Fig 7.13, can only rarely be found for the porous CoNiCrAlY bondcoat in Fig 7.20d. The spinel 

formation and crack propagation through this mixed oxide dominated the degradation of the TBC 

system with porous coatings, which prevented a lifetime extension compared to the dense TBC system. 

 

To summarize, for CoNiCrAlY bondcoat the extensive spinel formation is observed only in the case of 

porous coatings. In contrast, on dense CoNiCrAlY bondcoat and on porous and dense NiCoCrAlY 

bondcoats the spinel formation is insignificant. These observations can be explained as follows:  

 

Fig. 7.20 SEM cross-sections of  failed APS-TBC’s with CoNiCrAlY bondcoats on alloy IN738 after 
2h/15min cyclic oxidation at 1100°C in air, a) and c): dense TBC and BC, 720h , b) and d): porous TBC 
and BC, 630h  

c) 20�m d) 20�m 

b) 100�m 

a) 100�m 
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In the beginning of the bondcoat oxidation process the oxides of all main elements are formed (Ni, Co, 

Cr, Al), and only after this transient oxidation process a continuous �-Al2O3 is established. The 

duration of the transient oxidation depends on a number of factors, including temperature, alloy 

(coating) composition and microstructure. It is known from literature [136] that the growth rate of Co- 

base oxides is significantly faster that that of the Ni-base oxides, due to a much larger concentration of 

cationic defects in the former oxide. Faster growing transient oxide delays the time before which 

slowly growing �-Al2O3 to be formed as a continuous scale rather than a Co/Al (Ni/Al respectively) 

mixed oxide (spinel) is formed. This explains why spinel formation is stronger in case of the 

CoNiCrAlY bondcoat (higher Co-content) compared to the NiCoCrAlY- bondcoat. 

 

The above arguments can, however, not explain why the spinel formation occurs on the porous 

CoNiCrAlY bondcoat, whereas it cannot be seen on the dense bondcoat. Studies of the as-received 

materials in Fig 7.21 indicate that the porous bondcoat has a higher roughness and a more convoluted 

surface and it exhibits more substantial porosity in the outer part of the bondcoat compared to the 

dense coating. The former microstructure results in much faster Al-depletion due to a much higher 

layer surface to volume ratio, then rapidly consuming the Al from the bondcoat. As a consequence, the 

transient oxidation stage will be longer for the porous bondcoat. Fig 7.20b shows that due to the 

specific morphology of the porous bondcoat and the internal bondcoat-porosity some parts of the 

coating can become separated from the rest of the bondcoat by the growing oxides. After longer 

exposure times, this effect results in local breakaway oxidation of the separated parts which become 

“blocks” of spinel oxides. These spinel “blocks” represent sites for easy crack initiation and/or 

propagation during thermal cycling, then contributing to shortening of the TBC lifetime. 

 

Based on the considerations presented above, one would expect at least some minor amounts of 

transient oxide (spinel) to be present in the outer part of the TGO formed on the dense CoNiCrAlY 

bondcoat. This could, however, not be observed in the SEM images (Fig 7.20c). In order to find the 

reasons for this difference, as-received TBC-systems with dense and porous CoNiCrAlY bondcoat 

Fig.7.21 Optical metallographic cross-sections of as-received APS-TBC’s with CoNiCrAlY bond 
coats on IN738 alloy, a): dense BC, b): porous BC  

a) b) 
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were studied in more detail. As can be seen in Fig 7.21 the system with dense bondcoat exhibits a thin 

layer of �-NiAl at the very bondcoat surface, which cannot be observed on the surface of the porous 

bondcoat.    

 

This thin �-NiAl layer on the dense bondcoat formed during the vacuum heat treatment prior to TBC-

deposition as a result of Cr-evaporation. According to the Thermo-calc® calculation in Fig 7.22, the � 

and � phases in the coating could transform to � when the Cr-content decreases during the heat 

treatment. This thin Al-rich �-NiAl layer could suppress the spinel formation due to a high Al-content 

and a lower Co-content on the coating surface in the dense coatings. 

 

Since different vacuum furnaces were used for the heat-treatment of the dense and porous bondcoats it 

is believed that the difference in Cr-evaporation can be related to different vacuum qualities prevailing 

in two equipments. In both cases the vacuum quality during heat-treatment was better than 10-4mbar. 

Based on recent studies [141] it can be argued that the rate of Cr-evaporation increases with increasing 

vacuum quality, i.e. decreasing the residual pressure in the vacuum chamber. 

 

According to the above results, a high Co-content in the MCrAlY bondcoat can promote spinel 

formation. During high temperature air exposure the effect can be accelerated by a high surface 

roughness and a high porosity of the bondcoat. The spinel formation was shown to be detrimental for 

the APS TBC lifetime. The formation of spinel could be suppressed by a thin layer of �-NiAl phase 

formed on the bondcoat surface of one of the TBC-systems during vacuum heat-treatment. These 

results imply that in the case of APS TBC systems the bondcoat surface roughness and composition 

are of great importance for obtaining a long and reproducible TBC life. 
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7.3 Effect of O content on the lifetime of APS TBC systems with MCrAlY and 
MCrAlY+Zr bondcoats 

In chapter 6.2, it was shown that minor Zr additions to the NiCoCrAlY bondcoats can result in lifetime 

extension of the EB-PVD TBC systems. The magnitude of the extension was, however, strongly 

dependent on the Zr-reservoir in the bondcoat. In contrast to EB-PVD TBC systems, however, a high 

Zr-content (0.6 wt %) in the bondcoat resulted in a shorter TBC lifetime in case of the APS TBC’s 

[67]. The reason for this negative effect was claimed to be a excessive non-uniform incorporation of 

Zr into the TGO resulting in local over-doping on the rough bondcoat surfaces. Accumulation of Zr-

rich oxides in the concave parts of the bondcoat occurred, which provided short-circuit paths for 

oxygen diffusion thus promoting scale growth. Rapid growth of the TGO in the neighboring concave 

areas finally led to encapsulation of the convex bondcoat areas by oxides. The encapsulated areas 

failed by breakaway oxidation due to the formation of voluminous Ni/Co-rich oxides, which initiated 

the macroscopic TBC failure.  

 

In section 6.1.1 it was shown for EB-PVD TBC systems that TGO-overdoping can be suppressed and 

TBC-lifetime substantially extended by reducing the reservoir of free Zr in the coating through 

decreasing the zirconium content. Another possibility could be to increase the O-content in the 

coating. In this way, Y and/or Zr could be partly tied-up in the bond coatings and the incorporation of 

the reactive elements into the TGO could be reduced, thereby reducing the scale growth rate and 

internal oxidation.  

 

In this study, the effect of O content on the life of APS TBC’s has been investigated for the 

NiCoCrAlY bondcoat with and without Zr-addition. The O-content in the coating was varied by 

varying the vacuum quality during the VPS process. The oxygen content in the bondcoats was 

measured using free-standing MCrAlY coatings. The free-standing coatings were produced using the 

same VPS-process as applied for the bondcoats for the TBC-systems, by spraying 2 mm thick coatings 

on 20×20 mm steel plates. The free standing coatings were removed from the steel plates by spark-

erosion, and then ground and cleaned in ethanol prior to the combustion analysis of the oxygen content. 

The analysis of the Y, Zr and O contents are presented in Table 7.2. 

 

 

Lifetime cyclic oxidation testing on APS-TBC systems with NiCoCrAlY (low Al) bondcoat with two 

different O-contents, with and without Zr addition were performed at 1100°C in air (Fig 7.23). The 

 Y Zr Low O-content High O-content 

NiCoCrAlY (low Al), low Y 0.28 - 0.05 0.2 

NiCoCrAlY (low Al), Zr-mod. 0.28 0.6 0.05 0.2 

Table 7.2 Y, Zr, O-contents in the free-standing MCrAlY (low Al) BC, mass %   
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average TBC lifetime with NiCoCrAlY+Zr bondcoat with a high O-content was about 300h, which 

was by a factor of two longer compared to that formed for a bondcoat with a low O-content. 

Furthermore, the average values of lifetime of the TBC system with Zr-doped, high-O bondcoat are 

similar to those   of Zr-free bondcoats with low as well as high O-contents. 

 

Fig 7.24 shows metallographic cross-sections of the studied TBC systems after oxidation until failure 

at 1100°C. It can be seen that the TGO morphologies and failure modes are similar between all 

systems except the one with Zr-doping and low O-content, in agreement with the lifetime data in Fig 

7.23. In the three first mentioned systems rather uniform TGO’s formed and the crack propagation 

path is similar as described in the previous section for NiCoCrAlY bondcoat, i.e. cracks initiated at the 

TGO/bondcoat interfaces of the convex surfaces propagating through the TBC. The system with Zr-

doped bondcoat and low O-content shows excessive oxidation in the concave parts of the bondcoat. 

The two systems with the high O-content show numerous oxide inclusions throughout the bondcoat, 

which were identified by EDX-analysis to be Y/Al-rich oxides, in agreement with previous 

observations [25]. 

 

As discussed in the introduction to the present work, additions of reactive elements, such as Y are of 

significant importance for the oxide scale adherence on alumina forming alloys and coatings. 

Furthermore, it has been shown that the positive RE-effect depends on the RE-reservoir and RE-

distribution in the alloy/coating prior to the high-temperature oxidation. It was found [65] that during 

cyclic oxidation of NiCrAl alloys the resistance of the oxide scale to spallation increased with 

increasing Y to S and Hf to C ratio. The results with EB-PVD TBC systems with Y+Zr co-doped 

MCrAlY bondcoats with low Y, Zr contents also suggested [67] that the TGO adherence and the TBC 

lifetime can be shortened and become less reproducible due to impurities in the bondcoat introduced 

during processing. This is, because for flat TGO/bondcoat interfaces loss of scale adherence results in 

Fig. 7.23 Lifetime of cylindrical APS-TBC with NiCoCrAlY (low Al) BC with various Y, Zr and O 
contents tested in 2h/15min cyclic oxidation experiment at 1100°C in air. Low Y: NiCoCrAlY (low 
Al), low Y BC; Zr-mod.: NiCoCrAlY (low Al), Zr-mod. BC. Concentration of Y, Zr, O are given in 
Table 7.2  
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a rapid crack propagation and failure of TGO and TBC. The results in the current chapter, however, 

indicate that for APS-TBC systems the increasing O-content does not have a negative effect on the 

TBC life. The reason is that a different failure mechanism prevailing in the case of APS-TBC systems, 

as discussed in the previous chapter (Fig 7.17). Apparently, the time representing crack formation and 

growth at the TGO/bondcoat interface represents only a relatively small fraction of the APS-TBC 

lifetime, which is mainly determined by the crack propagation rate in the TBC. 

 

a) 

Gap 

100�m 

b) 

Gap 

100�m 

Fig. 7.24 Optical metallographic images for APS-TBC with NiCoCrAlY (+Zr) BC specimen after 2h/15min 
cyclic oxidation  till TBC failure at 1100°C in air, a),Y high-O (324h);  b) Y, low-O (324h); c) Y+Zr, High-O 
(306h); d)Y+Zr, Low-O (144h)   

c) 
100�m 

d) 100�m 
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7.4 Effect of atmosphere composition on lifetime of APS-TBC systems with 
MCrAlY bondcoats 

 The presence of a higher water vapor content in the atmosphere exhibited a detrimental effect on the 

lifetime of EB-PVD TBC systems with MCrAlY bondcoats as discussed in chapter 6.3.2. This was 

explained by hydrogen embrittlement of the oxide scale/bondcoat interface; hydrogen being produced 

by reaction between H2O and Al from the bondcoat. Therefore, tests were performed with APS-TBC 

systems, which had the same bondcoats compositions as those used in the EB-PVD TBC systems in 

chapter 6.3.2. In this case, it should be checked to see whether a similar detrimental effect of H2O also 

occurs in case of APS-TBC systems. The results of the tests show that the water vapor in the 

atmosphere does not have a significant effect on the APS TBC lifetime in high oxygen partial pressure 

environment (Fig 7.25). The lifetime of APS TBC systems with MCrAlY bondcoats are comparable 

when oxidized in air and air + 20%H2O. It should be noted that the lifetime of the APS-TBC systems 

with NiCoCrAlY+Beta bondcoat was more than two times longer than the lifetimes of TBC-systems 

with other bondcoats. This can be probably related to a lower thermal expansion coefficient of the �-

phase compared to that of the � and � + � MCrAlY-coatings. The lower CTE results in a lower thermal 

mismatch stress in the TGO and/or the TBC upon cooling, as described previously in chapter 7.2.1. 

 

Fig 7.26 shows metallographic cross-sections of the studied APS-TBC-systems after exposure untill 

failure in laboratory air and laboratory air + 20% H2O. It can be seen that the crack propagation paths 

in the TBC are very similar in both atmospheres indicating very similar failure modes. As shown in 

chapter 7.2.3 and reference [113] the TBC-failure is initially TGO-delaminations from the bondcoat-

hills followed by crack extension through the TGO into the TBC until a critical size for macroscopic 

damage is reached. 

Fig. 7.25 Lifetime of  APS TBC systems with different bondcoat after discontinuous oxidation (167h) at 
1050°C in air and air + 20% H2O. High-Y BC: NiCoCrAlY (low Al) with 0.6 wt% Y; Low-Y BC: 
NiCoCrAlY (low Al) with 0.3 wt% Y; Gamma BC: NiCoCrAlY (low Al) bottom layer + Gamma NiCoCrAl 
(upper) layer ; Beta BC: NiCoCrAlY (low Al) bottom layer + Beta upper layer 
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Investigation of the morphologies and thickness of the TGO’s formed in the dry and wet atmospheres 

reveals a very similar oxidation behavior of the studied TBC-systems in the two environments (Fig 

7.27). It is worth emphasizing that similar lifetimes of APS-TBC systems with MCrAlY bondcoats in 

wet and dry air contrast with the observations made with EB-PVD TBC systems where a large effect 

of the water vapor on lifetimes was observed. The difference in behavior of the two types of TBC-

systems is related to different failure mechanisms. Whereas in the case of EB-PVD TBC systems the 

presence of water vapor can affect the TGO adherence by H-embrittlement, in the APS-TBC systems 

it can affect only the early stages of failure, i.e. the delaminations at the scale/metal interface of the  

Fig. 7.26 Optical metallographic cross-sections  of failed APS-TBC systems with  NiCoCrAlY BCs after 
discontinuous oxidation (167h cycles) at 1050°C in air and air+20%H2O, a) and e): NiCoCrAlY (low Y); 
b) and f):  NiCoCrAlY (high Y);  c) and g): NiCoCrAlY + Gamma; d) and h): NiCoCrAlY + Beta 

100�m 100�m 

100�m 100�m 

100�m 100�m 

100�m 100�m 

Air, 1835h Air+20%H2O, 1834h 

Air, 1834h Air+20%H2O, 1217h 

Air, 1167h Air+20%H2O, 1835h 

Air, 4827h Air+20%H2O, 4715h 
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f) 
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bondcoat-hills. The stage of crack propagation through the TBC seems to be much less affected by the 

presence of H2O in the test environment. One of the possible reasons for this finding can be that no 

reactive metal, such as Al is available for a chemical reaction to produce hydrogen. Another reason is 

Fig. 7.27 Optical metallographic cross-sections  of failed APS-TBC systems with  NiCoCrAlY BCs after 
discontinuous oxidation (167h cycles) at 1050°C in air and air+20%H2O, a) and e): NiCoCrAlY (low Y); 
b) and f):  NiCoCrAlY (high Y);  c) and g): NiCoCrAlY + Gamma; d) and h): NiCoCrAlY + Beta 

Air, 1835h Air+20%H2O, 1834h 

Air, 1834h Air+20%H2O, 1217h 

Air, 1167h Air+20%H2O, 1835h 

Air, 4827h Air+20%H2O, 4715h 

a) 

b) 

c) 

d) 

e) 

f) 

g) 

h) 



76 
 

that single phase YSZ ceramics with 6-8% Y2O3 seem to be stable in the presence of H2O [142]. This 

contrasts to many other oxide systems, such as glasses, where the presence of moisture was claimed to 

induce premature mechanical failure of the material by a chemical reaction involving H2O at the crack 

tip, a mechanism known as “static fatigue” [143]. 

 

Fig 7.28 shows XRD patterns of the APS-TBC systems in the as-received condition as well as after 

exposure for about 4800h in dry and wet air. It can be seen that the phase composition of the TBC has 

hardly been changed during the exposure at 1050°C in test gas with H2O addition. This confirms the 

above considerations that only a minor effect of H2O on the phase composition of the TBC occurs. 

7.5 Effect of temperature cycling parameters on lifetime of APS-TBC systems 
with MCrAlY bondcoats 

7.5.1 Effect of cycling frequency on lifetime of APS-TBC with NiCoCrAlY bondcoat 

It is well known that APS-TBC lifetime is affected by temperature cyclic conditions. However so far 

no standardized procedures exist, for the cyclic furnace tests to assess the TBC-lifetime. This makes it 

difficult to compare the results from different laboratories. Some laboratories are using short cycles of 

1-2h hot dwells with cooling periods of 10-20min [103]. In this case forced air cooling is essential to 

reach near room temperatures within the short cooling time. Other laboratories operate with long 

cycles, whereby the hot dwell times are in the order of 24-200h and use significantly longer cold dwell 

times (typically a few hours) with still air cooling. The above differences in test procedure can have a 

big effect on the measured TBC-lifetime. Since during each temperature cycle stresses are generated 

in the components of the TBC system due to the differences in CTE, high cycle frequencies can result 

in more extensive damage and shorter TBC lifetimes. 
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Fig. 7.28 XRD analysis of the as-received APS TBC as well as after oxidation for 4817h 
and 4715h in air and air+20%H2O, respectively 
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It was demonstrated for alumina forming alloys and coatings [103] that higher cycle frequencies result 

in accelerated scale spallation. Another important parameter is the cooling/heating rates. It was shown 

[122] that alumina scale adhesion can be affected by the creep of the substrate metal. Therefore, 

slower cooling rates, which can promote metal (or coating) creep can result in a lower residual stress 

in the TGO/TBC and consequently a longer TBC life. Finally, cold dwell times in EB-PVD TBC 

systems were shown to be important for TBC lifetime [144] since alumina scale spallation at room 

temperature is promoted by moisture. Thus, EB-PVD TBC systems were shown to be susceptible to 

the so-called “desk-top” effect, i.e. delayed spallation of an initially intact TBC during exposure at 

room temperature. In contrast, for APS-TBC there were no definite conclusions on the desk-top effect. 

Therefore, in the present project the effect of temperature cycling parameters on the lifetime of APS-

TBC systems with NiCoCrAlY (low Al) bondcoat has been investigated. 

 

 Different hot/cold time cycling e.g. 105min/15min, 75min/45min, 21h/3h, 18h/6h, and 2h/15min were 

carried out for the porous and dense APS TBCs systems at 1050°C in laboratory air. Fig 7.29 showed 

the different cooling curves. In the first four cycles the specimens were cooled down using still 

laboratory air. The details of the cycling are shown in Table 7.3.  

 

Total cycle length, 

h 

Hot time,  

relative length (%) 

Cold time,  

relative length (%) 

Final temperature at the 

end of cold time, °C 

2h 
75min, 62.5% 45min, 37.5% 65°C 

105min, 87.5% 15min, 12.5% 140°C 

24h 
18h, 62.5% 6h, 37.5% 65°C 

21h, 87.5% 3h, 12.5% 65°C 

2.25h 2h, 88.9% 15min, 11.1% 35°C 

Table 7.3 Details of the cycling parameters for studied APS-TBC systems 

Fig. 7.29 Cooling curves for the different cycling: 105min/15min, 75min/45min, 21h/3h, 
18h/6h, and 2h/15min with jet air cooling  
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Fig 7.30 shows the lifetime (time at high temperature) of the porous and dense APS-TBC systems with 

NiCoCrAlY (low Al) bondcoat under different cyclic conditions at 1050°C. The lifetime of the porous 

TBC systems was longer than that of the dense TBC system under each of the five cycling conditions, 

confirming the outcome of the lifetime tests in chapter 7.2.3.1. The data in Fig 7.30 also point out that 

the average lifetime of the porous TBC systems after 24h-cycle oxidation seemed to be longer, i.e. 

about 4000h, than that after 2h-cycling. For 24h-cycle oxidation, the life of the porous TBC’s showed 

a larger scatter than the 2h-cycle exposure. For 2h-cycle, a shorter lifetime of the porous TBC’s could 

be observed after 75min/45min cycling compared to 105min/45min cyclic oxidation. 

 

For the dense TBC system, a similar dependence on cycling parameters was observed as for porous 

TBC systems, i.e. for the 24h-cycling exposure the lifetime was longer than for the 2h-cycling. The 

TBC life was again shorter when the specimens were cooled in 2h/15min cycles at a fast rate to a 

lower final temperature. It should be noted that the reproducibility of the lifetime data for the dense 

TBC-system after 24h-cycling oxidation was better than that of the porous TBC systems. During 2h-

cycling exposures with still air cooling the lifetimes of the dense TBC-systems were very similar 

contrary to the observation with the porous TBC systems.  

 

Fig 7.31 shows the lifetimes of the TBC systems presented as the number of cycles for the above five 

cycling oxidation tests. The porous TBC specimens under 2h-cycle oxidation survived about 2000 

cycles till the TBC failure, which is about a factor of 10 longer than that after 24h-cycling. Compared 

to the life data after 2h/15min cyclic oxidation, it can be concluded that in addition to the cycle 

frequency, the final cooling temperature as well as cooling rate can be important factors for the TBC 

lifetime. The above presented lifetime data indicate that the different relative cold time fractions of 

Fig. 7.30 Lifetime expressed in hot hours for porous and dense TBC systems after different 
hot/cold time cyclic oxidation at 1050°C in air 
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12.5% and 37.5% had no significant effect on the lifetime of APS-TBC systems. More likely, the 

lifetimes were dependent on the final cooling temperature and/or cooling rate. 

 

Metallographic cross-sections were prepared from the TBC specimens after different cyclic exposure 

conditions. Since for a given system the TGO morphologies and crack propagation patterns were 

similar under all the cycling conditions, here, only the cross-sections of the failed TBC systems after 

21h/3h cyclic oxidation are shown in Fig 7.32. Internal oxidation was found for the porous TBC 

systems (Fig 7.32a) due to the porous microstructure of the bondcoat, as previously discussed in 

chapter 7.2.3. The high magnification SEM images in Fig 7.33a shows that the repeated cracking of 

the TGO is a typical characteristic of the porous TBC systems. The cracks form on the convex 

surfaces of the dense bondcoat, and then penetrate through the TBC, which is typical for the dense 

TBC systems as shown in Fig 7.32b and 7.33b.  

 

Fig. 7.32 SEM cross-sections of failed APS-TBC systems with NiCoCrAlY bond coats on IN738 after 21h/3h 
cyclic oxidation at 1050°C in lab. air, a) 4725 h, porous TBC system , b) 2016 h, dense TBC system 

a) 100�m 100�m b) 

Fig. 7.31 Cycles to failure of porous and dense TBC systems after different hot/cold time cyclic 
oxidation at 1050°C in air 
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Fig. 7.33 Cross-sections of failed APS TBC systems after 21h/3h cyclic oxidation showing, a) repeated 
cracking of the TGO in porous TBC system, b) typical crack propagation for the dense TBC system 

b) 20�m 

a) 20�m 

Fig.7.34 EDX-element mappings from cross-section of failed porous 
APS-TBCsystem with NiCoCrAlY (low Al)  bondcoat on IN738 
after 21h/3h cyclic oxidation in lab. air at 1050°C for 4725 h  
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For investigating the composition of the TGO and the bondcoat, EDX elemental mappings were 

obtained from the cross-sections of the APS-TBC systems. Fig 7.34 shows the elemental mapping for 

failed porous APS-TBC systems with NiCoCrAlY (low Al) bondcoat. The O and Al elemental 

mappings confirmed that the oxide was mainly alumina. The elemental mappings of the major 

bondcoat elements Ni, Cr, Co and Al clearly show that the bondcoat is single phase (�-Ni). Metal 

particles containing Ni, Cr, Co and virtually no Al were observed in the outer part of the bondcoat. 

Non-protective oxide (spinel) formation due to Al depletion, however, was in general not found. 

Randomly, very small Ti-rich precipitates could be checked in the bondcoat, which are, however, 

believed not to have any significant effect on the TGO formation.   

 

The elemental mappings for the dense APS-TBC system with NiCoCrAlY (low Al) bondcoat are 

shown in Fig 7.35. The O and Al mappings present a relatively uniform alumina based TGO. In the 

center of the bondcoat �� precipitates were found as indicated by their high Ti-content. The 

morphology of these particles indicates that �� formed from the � phase, possibly due to Ti diffusion 

from the superalloy into the bondcoat. Why the ��-formation was not observed in the case of the 

Fig. 7.35  EDX element mappings from cross-sectionsof failed 
dense APS-TBC systems with NiCoCrAlY (low Al) bond coat 
on IN738 after 21h/3h cyclic oxidation in lab air at 1050°C for 
2016 h 

100�m O Al 

Ti Cr Co 

Ni 



82 
 

porous TBC system, which has normally the same bondcoat and superally, is not fully understood. 

Perhaps it is related to the factor of two longer exposure time, whereby more Al would be consumed 

for the scale formation resulting in destabilization of the �� phase.  

7.5.2 Effect of cooling rate to TBC-systems with NiCoCrAlY bondcoat 

An important result in the previous chapter was that the TBC lifetime of the specimens in the 2h cyclic 

test was shorter in the case of pressurized air cooling than formed for the still air cooling. The reason 

for this effect can be either a faster cooling rate (Fig 7.29) or a lower cold dwell temperature (Table 

7.3) in the former cycle. In order to clarify, which of the two testing parameters causes the difference 

in lifetime of TBC’s, a set of cyclic oxidation experiments was performed with deliberately varied 

cooling rate but essentially the same cold dwell temperature, as discussed in this section.  

 

Failure of TBC systems is normally associated with stresses in the TGO, which mainly develop during 

cooling from oxidation to room temperature. The reduction of TGO stress does not automatically 

mean an improvement of oxide adherence, however, the slow cooling rate could promote stress 

relaxation [145] due to alloy/ bondcoat creep and plastic deformation. On the other hand, a lower cold 

dwell temperature can promote strain energy relaxation through crack propagation [117]. In the 

present study, two different cooling rates were generated through adjustment of the air flow rate, 

whereas both cycling parameters sets had the same final cold dwell temperature. The cooling curves 

for both experiments are shown in Fig 7.36. The porous and dense TBC systems with NiCoCrAlY 

(low Al) bondcoat were investigated in these tests. For the dense TBC system the base material was 

IN738, whereas for the porous TBC-system it was CM247. It is important to note that other batches of 

samples were used in Chapter 7.2.3.1 for the effect of bondcoat main composition. Hence, the absolute 

lifetime values obtained in these two tests cannot be directly compared. 

 

Fig. 7.36 Cooling curves for the 2h/15min and 2h/45min cycling test with the same cold 
dwell temperature of 35°C 
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 Fig 7.37 shows the lifetimes of APS TBC systems after 2h/15min and 2h/45min cyclic oxidation at 

1100°C in air. The average lifetime of dense TBC systems after 2h/15min cyclic oxidation at 1100°C 

was similar to that after 2h/45min cyclic exposure. However, the 2h/45min cycle with slow cooling 

rate resulted in a slightly larger scatter of lifetime for the dense TBC system. The porous TBC systems 

exhibited similar lifetimes after 2h/15min and 2h/45min cyclic oxidation. It can be seen that for a 

given TBC system the cooling rate did not have a substantial effect on the TBC lifetime.  

 

The cross-sections of the failed APS-TBC systems are shown in Fig 7.38. The different test 

parameters did substantially not affect the morphologies of the TGO for both TBC systems. The 

microstructure of the bondcoat induced different TGO morphologies between dense and porous TBC 

systems as already observed previously (Chapter 7.2.3). Oxidation of pore surfaces in the TBC system 

with porous bondcoat induced a rapid Al-depletion from the bondcoat, which resulted in a complete 

transformation of �-NiAl into �-Ni phase.  

 

According to the results presented in this chapter, the APS-TBC lifetimes were similar after different 

cooling rates with similar cold dwell temperature. Therefore, the exact value of low cold dwell 

temperature could play a role in determining APS-TBC lifetime. The reason for this effect is not 

understood at the moment. Acoustic emission data [146] indicated that cracking in an APS system 

greatly increased by changing the cold dwell temperature from 350°C to 60°C, resulting in significant 

shortening of the TBC lifetime.    

 

It is remarkable that the relatively small difference between the two cold dwell temperatures, i.e. 65°C 

vs. 35°C, could have a significant effect on the TBC lifetime. Such an effect cannot be related to 

elastic thermal stress generated due to CTE mismatch between the metallic (bondcoat and superalloy) 

Fig. 7.37 Lifetime of the porous and dense APS-TBC systems with NiCoCrAlY(low Al) BCs after 
2h/15min (fast cooling) and 2h/45min (slow cooling) cyclic oxidation at 1100°C in air 
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and ceramic (TGO and TBC) constituents of the system. Further studies are required in order to 

explain the above effect of cold dwell temperature on the lifetime of TBC’s. 

7.6 Discussion of findings related to APS-TBC systems with MCrAlY bondcoats 

The studies on APS-TBC systems with MCrAlY bondcoats revealed that their lifetime is affected by 

the main bondcoat composition, minor addition of Zr in the bondcoat, TBC and bondcoat 

microstructure as well as testing conditions. With respect to the main bondcoat composition, it was 

observed that for a dense bondcoat the TBC lifetime was longer when using a Co-base MCrAlY 

compared to a Ni-base MCrAlY coating. This could be explained by a higher microstructure stability 

(less phase transformations) as a function of temperature in Co-base bondcoats, similar to the 

observations made earlier with EB-PVD TBC systems.  

 

In the case of TBC-systems with porous bondcoat the positive effect of Co was lost due to enhanced 

bondcoat-oxidation. The latter occurred because of locally prevailing higher surface to volume ratio of 

the rough and porous bondcoat thus promoting formation of non-protective spinel oxides, rather than 

alumina observed in the case of a dense bondcoat. An additional reason for formation of an alumina 

Fig. 7.38 Optical metallographic cross-sections for failed APS TBC’s with NiCoCrAlY BC after 
cyclic oxidation in air at 1100°C, a) and b): 2h/15min; c) and d): 2h/45min; a) and c): systems 
with dense BC and TBC; b) and d): systems with porous BC and TBC 

a)  b)  

c)  d)  
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scale on the dense Co-base bondcoat could be �-NiAl enrichment at the bondcoat surface as a result of 

Cr evaporation during vacuum heat-treatment of this batch of specimens.  

 

The lifetime of APS-TBC systems was observed to be affected by the TBC porosity and the outer 

roughness profile of the bondcoat. These microstructure parameters appeared to determine the crack 

propagation rates in the TBC. It could be demonstrated that for porous, strain-tolerant TBC’s the 

lifetime can be extended by a factor of 2 to 3 by a favorable (‘microrough’) bondcoat surface 

topography with respect to a simple “sinusoidal” type one.   

 

Minor additions of Zr to an MCrAlY bondcoat, which were shown to be beneficial for the lifetime of 

EB-PVD TBC systems, appear to have no positive, but rather a negative effect on the lifetime of APS-

TBC systems. This was due to “overdoping” of the TGO’s with Zr, whereby ZrO2 precipitates formed, 

which served as short circuit paths for inward oxygen diffusion, resulting in rapid oxidation of 

bondcoat concave surfaces. In the present work it was shown that the negative Zr effect could be 

suppressed by higher O-content in the bondcoat. Thereby the lifetime became similar to the system 

with Zr free NiCoCrAlY bondcoat. Furthermore, it was shown that for NiCoCrAlY bondcoat the exact 

O-content does not have a substantial effect on the TBC lifetime, contrary to what was observed in 

EB-PVD TBC systems. This is because in APS TBC systems the failure is determined mainly by 

crack propagation through the TBC and not primarily by the oxide scale adherence as in the case of 

EB-PVD TBC systems. 

 

Presence of water vapor in the atmosphere appeared to have no significant effect on the APS TBC 

lifetime contrary to the observations made with EB-PVD TBC. This finding indicates that the crack 

penetration rate within YSZ is insensitive to the presence of water vapor and perhaps is related to YSZ 

phase stability in high temperature water vapor containing environment. 

 

Finally, studies related to variation of temperature cycling parameters have shown that the lifetime of 

APS-TBC systems can be affected by the cyclic frequency and cold dwell temperature. More frequent 

cycling and lower cold dwell temperature shorten the lifetime, whereas cooling rate and duration of 

the cold dwell appeared to have no significant effect.  

 

It should be noted that the absolute values of the lifetimes of the studied APS-TBC’s as well as the 

EB-PVD TBC systems with MCrAlY bondcoats determined in a cyclic oxidation test at 1000°C or 

extrapolated to this temperature from higher temperatures (1100°C and 1150°C) appear to be rather 

short as compared to the lifetime requirement of 25000 h operating hours (Fig 8.16). Although the 

TBC lifetimes determined in a cyclic oxidation test on laboratory samples cannot be compared directly 

with the TBC lifetimes of the turbine hardware under real operating conditions, the results of the 
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above tests indicate that the lifetimes of TBC systems with MCrAlY bondcoats may not be sufficiently 

long for the above lifetime requirement at 1000°C. Therefore, alternative TBC systems with other 

types of bondcoats should be considered. NiPtAl bondcoats are commonly used in EB-PVD TBC 

systems for protection of aircraft engine components made of single crystal Ni-base superalloys. 

Therefore in the next chapter EB-PVD TBC systems with NiPtAl bondcoat will be studied and the 

lifetimes and oxidation behavior will be compared with those of the TBC systems with MCrAlY 

bondcoat. 
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8 Factors affecting lifetime of EB-PVD TBC-systems with NiPtAl 

bondcoats  

8.1 General Remarks  

Pt-modified nickel aluminide as oxidation resistant coatings or as a bondcoat for thermal barrier 

coating (TBC) have been commonly used for protection of jet-engine components. The application of 

NiPtAl coatings in industrial gas turbines is, however, less common than use of MCrAlY bondcoats. 

The Pt-modified aluminide bondcoat forms an alumina scale, which is similar to involved MCrAlY-

coatings, in TBC failure although the failure mechanisms can be different. For MCrAlY-type 

bondcoats numerous compositions are available commercially. Furthermore it is easy to produce a 

coating with a modified composition. In contrast, for NiPtAl-coatings and bondcoats the coating 

chemistry depends largely on the used aluminizing process and to some extent on the composition of 

the substrate alloy, from which elements such as Cr, W etc are incorporated into the aluminized layer. 

With respect to the aluminizing process, the NiPtAl coatings can be divided into two groups: high and 

low Al-activity (aAl), respectively. There are plenty of data in the literature on the oxidation behavior 

and lifetime of TBC systems with NiPtAl bondcoats. However, a direct comparison of high and low-

aAl bondcoats with respect to TBC lifetime has not yet been shown. Therefore, in the present studies 

the lifetime of EB-PVD TBC systems with high and low-aAl NiPtAl bondcoats will be measured in a 

cyclic oxidation test in the air with and without water vapour and compared to the systems with 

MCrAlY bondcoats. The TBC failure mechanism will be also investigated in this work.     

8.2 Effect of NiPtAl bondcoats manufacturing on lifetime of EB-PVD TBC  

The lifetimes of EB-PVD-TBC with low-aAl or high-aAl NiPtAl bond coatings after 2h/15min cyclic 
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oxidation at 1100°C and 1150°C in air are summarized in Fig 8.1. The EB-PVD TBC lifetimes at 

1150°C were approximately 500 h, which was only 15 to 20% from the values measured at 1100°C. 

This could be related to the fast TGO growth rate at the higher temperature; a detailed discussion will 

be given in the following chapter. No clear difference of the TBC lifetime at 1100°C and 1150°C was 

found between the low-aAl and high-aAl coatings. The lifetime for the TBC specimens with these bond 

coatings exhibited a quite good reproducibility. 

8.2.1 Characterization of as-received TBC systems with NiPtAl coatings 

To understand the TBC failure mechanism, the characterizations of as-received EB-PVD TBC with 

NiPtAl coatings were performed to have a reference for analyses of the oxidized materials. Fig 8.2 

shows SEM cross-sections of EB-PVD-TBCs with low-aAl and high-aAl bondcoats deposited on the 

single crystal superalloy CMSX-4. The low-aAl bondcoat was found to be slightly thinner and the 

interdiffusion zone slightly thicker compared to the high-aAl. The high-aAl coating consists of two 

phases, i.e. �-NiAl and PtAl2 whereas the low-aAl coating was single phase �-NiAl, which was 

confirmed by XRD analysis performed on specimen parts, which had not been coated with TBC, in 

Fig 8.3. 

 

 

The XRD patterns are in good agreement with the SEM-images in Fig 8.4 revealing that the low-aAl 

bondcoat only consisted of Pt-containing �-NiAl phase, however, �-NiAl and PtAl2 appeared for the 

high-aAl bondcoat. According to the literature [147] the low-aAl coating grows by Ni outward diffusion 

from the superalloy. In contrast, the high-aAl NiPtAl coating grows by Al inward diffusion into the  

Fig. 8.2 SEM cross-sections of as-received EB-PVD-TBC systems on CMSX-4 with NiPtAl bondcoats, 
a) low-aAl, b) high-aAl coatings 
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superalloy. Fig 8.4 also points out that the interdiffusion zones, which are located between bondcoat 

and superalloy, consisted of �-NiAl phase together with a number of Cr/Ti/Ta/W-rich precipitates. In 

the cross-section of the low-aAl coating, occasionally some small pores could be observed between the 

bondcoat and the interdiffusion zone. For the high-aAl coating, no such defects could be found in the 

bondcoat near the superalloy.  

 

 

The chemical compositions of the as-received NiPtAl coatings were analysed by EDX, as shown in 

Fig 8.5. In the as-received condition, the Ni-content was about 30 at% for the high-aAl coating and 

nearly 50 at% for the low-aAl coating. In contrast, the Al content was 40 at% in the low-aAl and over 52 

at% for the high-aAl coating. The Pt-content in the high-aAl coating was about 10 at% and 

approximately 5 at% in the low-aAl coating. Other elements, e.g. Co and Cr resulting from outward 

diffusion from the CMSX-4 superalloy during the coating processes were also observed. Using these 

measured element concentrations for the low-aAl and high-aAl coating, both coating composition are 

plotted in the ternary Ni-Pt-Al phase diagram at 1100°C/1150°C in Fig 8.6. 

 

 

Fig. 8.4 SEM images for as-received NiPtAl coating without TBC, a) low-aAl, b) high-aAl coatings  

a) 10�m 

Interdiffusion zone 

10�m b) 
Interdiffusion zone 

10 20 30 40 50 60 70 80

In
te

n
si

ty
, a

.u
.

2 Theta

PtAl2
NiAl

Low-aAl BC

High-aAl BC

Fig. 8.3 XRD analysis for (TBC free) NiPtAl coatings at room temperature 



90 
 

                                                 

             

                    Fig. 8.6 Indication of measured composition for both NiPtAl coatings in tenary Ni-Al-Pt   
                    Phase  diagram at 1100°C [148-149] 

Fig. 8.5 EDX elemental profiles for as-received NiPtAl coatings measured in metallographic 
cross-sections, a) low-aAl, b) high-aAl coatings 
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8.2.2 Characterization of oxidized TBC systems with NiPtAl bondcoats 

Fig 8.7 shows the composition profiles of the bondcoat and interdiffusion zone for low-aAl coating 

after 20h cyclic oxidation at 900°C and 1100°C. Comparison of the concentration profiles with in the 

as-received condition (Fig 8.5) revealed the Ni and Al concentration in the low-aAl coating almost did 

not changed after 20h oxidation at 900°C.  

 

The Al and Ni concentration profiles for the low-aAl coating after 20 h oxidation at 1100°C shown in 

Fig 8.7b, were clearly different from those in the as-received coating and after exposure for 20 h at 

900°C. The Al concentration in the bondcoat decreased from 40 at% in the as-received to about 30 

at% after 1100°C exposure for 20h. The decreased Al content is caused by the fast interdiffusion with 

the superalloy substrate at high temperature and by alumina scale formation. It should be noted that 

the Pt content in the outer part of bondcoat does not seem to change significantly, however, the Pt 

profile after 20 h oxidation indicated that inward diffusion of Pt into the superalloy substrate was 

stronger at 1100°C than at 900°C. The concentration profiles of other elements, e.g. Co and Cr, also 

changed only slightly with increasing oxidation temperature. 

Fig 8.7 EDX elemental profiles for low-aAl NiPtAl coating after 20 h cyclic oxidation in air , a) at 
900°C, b) at 1100°C 
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Fig 8.8 shows the elemental concentration profiles for the high-aAl coating after 20 h exposure at 

900°C and 1100°C. The high-aAl coating exhibited drastic compositional changes after 20 h exposure 

at 1100°C compared to those at 900°C. The average concentrations of elements e.g. Ni, Al and Pt in 

the coatings hardly changed during 20 h oxidation at 900°C. The Ni and Al concentration profiles in 

the outer part of high-aAl bondcoat presented similar elemental diffusion trends compared to those of 

the low-aAl coating.  

 

The Al content dropped from over 52 at% to about 35 at% and the Pt content from 12 to 6 at% when 

the high-aAl coating was exposed for 20h at 1100°C. The Ni content increased from 25 at% to 50 at%, 

and Cr from 1 to 5 at%, respectively. These Ni, Al and Pt concentration profiles after 20h oxidation 

indicated that significant phase transformation and/or interdiffusion processes occurred for this coating   

at 1100°C. The Ni-Pt-Al phase diagram (Fig 8.6) indicated that the as manufactured composition of 

the high-aAl coating was located in the two-phase area, and near to the boundary of the single-phase �-

NiAl field. A small decrease in the Al-content would result in PtAl2 dissolution.  
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Fig 8.8 EDX elemental profiles for high-aAl NiPtAl coating after 20 h cyclic oxidation in air , a) at 
900°C, b) at 1100°C 
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To understand the changes in the coating compositions, Fig 8.9 shows the cross-sections of the 

specimens after 20 h cyclic oxidation at 900°C and 1100°C. The interdiffusion zone (IZ) became 

larger due to the elements interdiffusion compared to the as-received condition. The PtAl2 particles in 

the high-aAl coating were stable after 20 h exposure at 900°C, however, these Pt-aluminide precipitates 

decomposed after 20 h exposure at 1100°C. Fig 8.9c and d point out that the coating microstructure 

and the depth of the interdiffusion zone for the high-aAl coating are comparable with those for the low-

aAl coating after 20 h oxidation at 1100°C.     

 

Dissolution of the PtAl2 phase in the high-aAl coating during exposure at 1100°C observed in Fig 8.9 is 

in agreement with the EDX data in Fig 8.8. An explanation of this effect can be given using the 

ternary Ni-Pt-Al phase diagram in Fig 8.6. The single �-NiAl phase field in Fig 8.6 can be easily 

expanded due to presence of other elements such as e.g. Co, Cr, and W incorporated from the 

superalloy. Thereby the two-phase microstructure of the high-aAl coating which is stable at 900°C, 

becomes unstable and PtAl2 dissolves simply upon heating to 1100°C. 

 

Fig 8.10 a and b show SEM-images of the studied TBC systems with the low and high-aAl coatings 

after 300 h oxidation at 1100°C. The TGO morphology and thickness are very similar for both 

bondcoat systems. Fig 8.11shows that in a number of locations cracks were performed at the 

TBC/TGO interface as well as at the TGO/ bondcoat interface.  
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Fig. 8.9 SEM images of cross-sections for EB-PVD-TBC with NiPtAl coating after 2h/15min cyclic 
oxidation for 20 h, a): low-aAl, 900°C, b): high-aAl, 900°C, c): low-aAl, 1100°C, and d): high-aAl, 1100°C 
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Metallographic cross-sections in Fig 8.12 show that after extended exposure time at 1100°C, the 

microstructure of the coatings changed from �-NiAl to �-NiAl + �´-Ni3Al. The formation of the �´-

phase occurred mainly at the coating grain boundaries.  A more uniform distribution of �´ in the high-

aAl coating is probably related to a smaller grain size of this coating. (Such microstructure probably 

originated from transformation of �-NiAl + PtAl2 with a very fine grain size into single phase �-NiAl ). 

10�m 
a) 

10�m 
b) 

Fig.8.11 SEM images of cross-sections for EB-PVD-TBC systems with NiPtAl bondcoats after 2h/15min cyclic 
oxidation for 300 h at 1100°C in air, a) low-aAl, b) high-aAl NiPtAl coatings 

Fig.8.10  SEM images of cross-sections forEB-PVD TBC with NiPtAl coatings after oxidation for 
300h at 1100°C, a): low-aAl; b): high-aAl bondcoat, respectively 
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The transformation of �-NiAl to �´-Ni3Al is induced by Al-depletion from the bondcoat as a result of 

TGO-formation and interdiffusion with the base material. 

 

Fig 8.13 shows macro-pictures of the EB-PVD-TBC specimens with NiPtAl-bondcoats exhibiting 

failure after cyclic oxidation at 1100°C. The figures indicate macroscopic TBC buckling originating 

from the middle of the samples. The images in Fig 8.14 indicate that failure occurred at the TGO/ 

bondcoat interface, which was rather flat. Thereby the failure mode was similar to that observed for 

EB-PVD TBC systems with MCrAlY bondcoats (chapter 6.1). This observation is different to that 

made by other authors [94], who found for similar systems bondcoat rumpling and delamination at the 

TGO/bondcoat interface to be the main degradation failure mode. The TGO thickness upon occurrence 

of failure was very similar (7-8 �m) in both studied systems with NiPtAl bondcoats. 

 

The thickness of the thermally grown oxide was measured in SEM cross-sections after different 

exposure times. Fig 8.15 summarizes the TGO thickness measurements for the EB-PVD-TBC systems 

with both types of NiPtAl bondcoats as a function of time at 900°C, 1000°C, 1100°C, and 1150°C.  

For similar exposure times the TGO thickness increased with increasing exposure temperature, as 

expected from the common Arrhenius type temperature dependence of the oxidation rate. At 1100°C 

and 1150°C, the TGO thickness was approximately 7~8�m for failed TBC systems with both NiPtAl 

coatings. The TGO thickness measurement of the samples exposed at 1100°C allowed a meaningful fit 

with a power law time dependence of the TGO thickness (Fig 8.15). Within the measurement error,  

Fig.8.12 Metallographic cross-sections of TBC systems with NiPtAl coatings after cyclic oxidation to 
failure at 1100°C in air,  a): low-aAl, 2718 h, b):high-aAl, 2880 h
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Fig.8.13 Macro-photographs for TBC-coated sides after cyclic oxidation to failure at 1100°C in air,  a): 
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the TGO growth kinetics could be described using a sub-parablic, near cubic law. Such growth 

kinetics were observed for compact alumina scales formed on RE-doped FeCrAlY and MCrAlY-

alloys [29]. It should be noted that the TGO thickness between the low-aAl and high-aAl coatings were 

very similar after the same oxidation time at certain temperature. 

 

Based on the presented results it can be stated that the aluminizing process used for the NiPtAl-

bondcoat manufacturing (high or low-aAl) has no major effect on the TBC lifetime at 1100°C and 

1150°C. The failure is apparently determined by a critical TGO thickness, which is very similar in 

case of both bond coatings and at both studied temperatures (Fig 8.15). 

Fig.8.14 SEM images of cross-sections for TBC-coated sides after 2h/15min cyclic oxidation to failure at 
1100°C, a): low-aAl, 2682 h, b): high-aAl, 3474 h 
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Fig. 8.15 TGO thickness (X) as a function of time (t) during cyclic oxidation of TBC coating specimens at 
different temperature in air, a) low-aAl coating, and b) high-aAl coating. ‘F’ indicates macroscopic TBC failure 
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8.2.3 Comparison of oxidation behavior and failure modes of EB-PVD TBC systems with NiPtAl 
and MCrAlY bondcoats 

The lifetime of EB-PVD-TBC systems with NiPtAl coatings during cyclic oxidation at 1100°C 

reached approximately 2000 h after, which is significantly longer than that obtained for conventional 

MCrAlY coatings, as shown in Fig 8.16. The lifetime of EB-PVD TBC system with MCrAlY 

bondcoat can be extended by optimization of the reactive element (Y and Zr ) contents in the coatings 

or by using a platinized NiCoCrAlY bondcoat [86], or by using a CoNiCrAlY bondcoat (due to a 

lower CTE than NiCoCrAlY bondcoat), as illustrated in chapters 6 and 7. Assuming the same lifetime 

trend as observed at 1150°C and 1100°C prevails also at low temperatures, Fig 8.16 shows that the 

EB-PVD TBC systems with NiPtAl bondcoats offer a large potential to fulfill the TBC lifetime 

requirement of 25000h at temperatures as high as 1000°C.  

 

It should be noted that the lifetimes of the various systems presented in Fig 8.16 can not be 

unequivocally compared due to differences in base materials, sample geometries and processing steps. 

For the specimens with the NiPtAl bondcoats, the substrate alloy is a single crystal Ni-base superally 

CMSX-4, compared to the conventionally cast Ni-base alloy IN738 used for MCrAlY bondcoats. 

Other differences include sample processing, such as coating thickness and sample geometry. For the 

NiPtAl coating on CMSX-4, flat specimens of about 2mm thickness were used, contrary to cylinder 

type specimens with 10mm diameter for most of the MCrAlY bondcoat. However, the previous 

discussion illustrated that in all cases the TBC failure was linked to the TGO formation at the  

 
Fig. 8.16 Average lifetime of EB-PVD TBC with different bondcoats as a function of temperature 
after 2h/15min cyclic oxidation in air. Part of data was taken from Subanovic [67] and Quadakkers et al. 
[86].  The base material for systems with MCrAlY-bondcoats was IN738 whereas for those with NiPtAl-
bondcoats CMSX-4 was used. ‘P’- indicates plate and ‘C’- cylinder specimen geometry, respectively 
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TBC/bondcoat interface. Therefore, analysis of differences in the TGO growth rate and adhesion 

among these coatings can help to understand intrinsic mechanisms, which determine the lifetime of 

TBC’s with NiPtAl bondcoats as compared to those with conventional MCrAlY bondcoats. 

 

In Fig 8.17, the time dependence of TGO thickness and the critical oxide thickness in EB-PVD TBC 

systems with NiPtAl and MCrAlY coatings are compared. In terms of bondcoat oxidation, there were 

two clear differences between the two coating systems, which may affect the TBC lifetime. First, the 

critical TGO thickness for the NiPtAl coatings was approximately 7-8 �m, which was slightly higher 

than the 5-6 �m formed for a typical MCrAlY bondcoat (see chapter 6.3). Since the alumina scale 

growth rate obeys a near-cubic time dependence, this difference, which is not very large in absolute 

values, can have a substantial effect on the TBC-lifetime. For example, increasing the critical alumina 

scale thickness from 6 to 8 �m should for a given scale growth rate result in a factor of 2.4 increase in 

lifetime. Second, the TGO growth rate on the NiPtAl bondcoats appears to be slower than that on the 

MCrAlY coatings when comparing under the same exposure conditions. The combination of a slower 

TGO growth rate and larger critical TGO thickness for the NiPtAl bondcoats could make a substantial 

contribution to the longer lifetime of the TBC compared with that found in case of MCrAlY 

bondcoats. 

 

The critical TGO thickness for the onset of spallation of the NiPtAl coatings is higher than ones of 

typical MCrAlY coatings. One of the possible reasons for this effect can be an improvement of oxide 

scale adhesion by Pt as claimed by many other authors [42]. The TGO growth rate on the NiPtAl 

coatings is significantly slower than that on the typical NiCoCrAlY (low Al) coatings. One of the 

reasons for this effect could be the oxide microstructure. It was shown for many alumina forming 

alloys (e.g. FeCrAl and MCrAlY) that the scale growth mainly occurs via oxide grain boundary 

transport [132, 150], and the same is likely also to the case for NiPtAl coatings [151]. Therefore, if the 

Fig .8.17 Alumina oxide thickness as function of time and critical TGO thickness for failure 
of EB-PVD-TBC systems with NiPtAl and MCrAlY bondcoats during cyclic oxidation at 
1100°C in air 
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alumina scale microstructure on NiPtAl bondcoats is much more coarse grained compared to that on 

MCrAlY bondcoats, it will result in a slower scale growth. The effect of the oxide grain size on the 

oxidation kinetics was demonstrated recentely for FeCrAl alloys [152]. The TGO on the NiPtAl 

coatings was found to consist of two layers: an outer equiaxed and inner columnar alumina layer (Fig 

8.18a). The equiaxed small grains in the outer part of the TGO of the NiPtAl coating (Fig 8.18b) may 

originate from the initial stages of oxidation or they are the result of an outward scale growth process. 

The Pt particles and other defects, e.g. pores, were found within the equiaxed alumina layer. In fact, 

the grain size of the TGO on the typical MCrAlY coatings was similar or even slightly larger than that 

of the oxide on the NiPtAl coatings, even in the columnar alumina zone (Fig 8.18c). Therefore the 

alumina scale grain size cannot fully explain the slower oxide growth rate on NiPtAl compared to that 

of  MCrAlY bondcoats. 

 

Another possible reason for the slower TGO growth on NiPtAl bondcoat can be Hf-segregation which 

was observed at the alumina grain boundaries within the columnar oxide area in Fig 8.18a. On the 

other sample side, which was not coated with the TBC, HfO2 formation after longer exposure times 

was observed even on top of the alumina scale, as shown in Fig 8.19. The BSE image in Fig 8.19b 

shows the distribution of these HfO2 particles. The source of Hf for the formation of Hf-segregation  

Fig. 8.18 Microstructures of TGO on the bondcoats 
in EB-PVD TBC system after air oxidation at 1100° 
C, a) and b): HAADF/TEM images, low-aAl NiPtAl 
BC, 300h; c): SEM In-lens image, NiCoCrAlY(low 
Al) BC, 100h 

250nm

TBC

Pt

Equiaxed grains 

b) 

1μmBC 

TGO

TBC 

c) 

a) BC 500nm

Hf enrichment
Columnar grains 



100 
 

 

and formation of the HfO2 particles is Hf diffusing from the CMSX-4 base alloy. This is in agreement 

with observation from other authors [153]. Hf segregation to the TGO grain boundaries claimed to  

significantly reduces the scale growth rate, as was observed  for FeCrAlY alloys [154] and MCrAlY-

alloys [76] as well as for NiPtAl-alloys. Comparison of the studied EB-PVD TBC systems with 

MCrAlY and NiPtAl bondcoats revealed similarities in failure modes (delamination at the TGO/ 

bondcoat interface) upon reaching a certain TGO thickness. However, the exact mechanism for TGO 

growth and adhesion can be quite different between the two studied systems.  

8.3 Parameters affecting oxidation behavior of NiPtAl-coatings 

8.3.1 Effect of TBC top coat on rumpling of NiPtAl coatings 

The EB-PVD TBC ceramic top coat was observed to suppress surface rumpling of the NiPtAl 

bondcoats. A flat and homogeneous alumina layer was found to form at the TBC/bondcoat interface, 

whereas coating rumpling could be observed on the side without TBC (Fig 8.20). The rumpling is 

probably related to the microstructures of the NiPtAl bondcoat, especially the ��-Ni3Al distribution 

within the coatings. It is obvious that the TBC suppresses bondcoat rumpling as also found by other 

researchers [155]. The strength of  �� is significantly higher than that of �, as confirmed by nano-

indentation testing [156]. Therefore, the phase transformation from � to � + �� changes the overall 

mechanical properties of the coatings with increasing exposure time. Thus ��-Ni3Al formation in the 

NiPtAl coating could affect the rumpling of the NiPtAl coatings by just increasing the bondcoat 

strength.  

 

The rumpling process is related to cyclic plastic strains in the bond coat driven by the growth strains in 

the oxide combined with thermal expansion mismatch between oxide, bond coating, and substrate [93, 

157-158]. The thickness of the NiPtAl coating also was shown to have an effect on the occurrence of  

rumpling [159], although the exact mechanism was not completely clarified. It may be related to 

Fig. 8.19 SEM images for the low-aAl coatings without TBC topcoat after 1000 h isothermal oxidation at 
1100°C in air, a): SE signal; and b): BSE image 

b) 

2�m 

a) 

2�m 
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mechanical as well as chemical factors. The chemical composition affects the coating mechanical 

properties, such as the thermal expansion coefficient, creep and plastic strength. Others researchers 

[50] proposed that neither the alumina scale formation nor the difference in CTE between the 

bondcoat and superalloy have an influence on the rumpling. Rather the volume changed associated 

with phase transformation in the bondcoat is claimed to promote  the rumpling [51].  

 

As already shown in the previous chapter, bondcoat rumpling was not observed on the TBC-coated 

sides of the CMSX-4 samples with NiPtAl coatings. However, substantial rumpling was observed on 

the sides of the same samples without TBC (Fig 8.20). In the metallographic cross-sections it can be 

seen that the rumpling is different between the high-aAl and low-aAl coatings and probably has a 

correlation with the coating microstructures. The white phase seen in both coating cross-sections is ��, 

which formed at the coating grain boundaries due to rapid Al-depletion as a result of the TGO growth 

and Al-diffusion into the base alloy [94]. 

 

Fig.8.20 Metallographic cross-section images of the NiPtAl coatings with TBC a), c) and without TBC 
b), d) after 772h discontinuous oxidation at 1100°C in air. a) and b):low-aAl, c) and d):high-aAl coatings 
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In order to explain the observed differences in rumpling between the two coatings, detailed studies of 

specimen sides without TBC were performed using Profilometer, PSLS and SEM after various 

exposure conditions. Figs 8.21 and 8.22 show profiles of the low-aAl and the high-aAl coatings 

respectively after various cyclic oxidation times at 1100°C. The amplitude of the rumpling obviously 

increases with increasing time and/or the number of cycles.   

 

The profile data presented in Figs 8.21 and 8.22 were used to calculate various parameters of the 

rough surface according to the procedure proposed by [51]. To suppress the effect of minor 

manufacturing related surface irregularities, the measured data points were smoothened using a 

standard procedure of averaging 7 measured neighboring points. Although the length, L, along the 

surface of the oxide is in general sensitive to the algorithm of smoothening, the curve in Fig 8.23 is 

reasonably accurate when the smoothening window is much smaller than the size of undulations. 
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Fig.8.21 Oxide/ coating interface profiles of the as-received low-aAl NiPtAl coating (without TBC top 
coat) after 2h/15min cyclic oxidation for 20h, 300h, 1000h, and 2000h at 1100°C in air 
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Fig.8.22 Oxide/ coating interface profiles of the as-received high-aAl NiPtAl coating (without TBC top 
coat) after 2h/15min cyclic oxidation for 20h, 300h, 1000h, and 2000h at 1100°C in air 
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Utilizing the ratio of the length L for the oxide surface profile and the projected length L0 of the 

measured profiles, L/L0, it is possible to assess the surface tortuosity. The amplitude of undulations in 

normal direction was calculated as the Root-Mean-Square (RMS) of the measured coordinates of the 

oxide surface relative to the mid-line (in Fig 8.23).   

 

Due to the configuration of the coating surface was assumed to be represented by a simple sinusoidal 

periodic function. The roughness parameters RMS and L0 could be measured from the actual measured 

profiles. The equivalent rumpling wavelengths for the specimens could be compared using the 

formulation [159]: 

                                         
1

2

0

�

�
%

L
L

RMSW �
                                                                       (8.1) 

 

Analysis of the rumpling parameters in Fig 8.24 indicates that the average roughness (RMS) is similar 

on both bondcoats (i.e. low and high-aAl coatings) and it increases with increasing exposure time.  L/L0 

also increases with exposure time, but the values are different for the two bondcoats.  For a given 

exposure time L/L0 is larger for the high-aAl than for the low-aAl bondcoat. Also it should be noted that 

the wavelength in both cases exhibits only a minor increase with increasing exposure time. The 

wavelengths are much lager for low-aAl than for the high-aAl bondcoat, as is clearly appeared from the 

metallographic cross-sections in Fig 8.20.  

 

A similar effect as obtained by presence of TBC in respect to suppression of rumpling is exhibited by 

bondcoat polishing prior to oxidation (Figs 8.24 and 8.25). The RMS and L/L0 is much smaller in case 

of the pre-polished specimens than in case of specimen oxidation in the as-received conditions. 

Fig.8.23 Procedure for calculating the BC profile used in the present study.  Smoothening by averaging of 
7 points to obtain a curve (red line), and L calculated as sum of distances between the neighboring 
averaged points 
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However, this polishing treatment does not show a clear effect on the wavelength of the coating 

surface. In Fig 8.25, the residual oxide stress on the polished surfaces is shown to be significantly 

higher than that on the non-treated NiPtAl coating surfaces. These observations indicate that the 

primary reason for rumpling is not the �� precipitation at the coating grain boundaries, since this is not 

expected to be affected by the surface polishing. Apparently the surface polishing suppresses the 

Fig.8.24 Rumpling parameters of the oxide/NiPtAl coatings (with TBC top coat) as a function of 
time during cyclic oxidation at 1100°C, a): RMS; b):L/L0; c): W.  The values for oxidized coatings in 
the as-aluminized state shown by solid marks, and the coatings which ware polished prior to 
oxidation by empty marks  
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initiation of rumpling (see Fig 8.24), since initial undulations for rumpling to start with a smaller grain 

size on the polished coating surfaces than that in as-received condition.   

 

It may be argued that the major difference in rumpling behavior between the two coatings is related to 

substantial differences in the coating grain size. The latter is apparent from the SEM-images presented 

in Fig 8.26, in which ridges are clearly seen to be associated with the coating grain boundaries for the 

low-aAl NiPtAl coating, whereas the center of the grains are more or less flat. Oxide spallation occurs 

from the ridges after longer times of cyclic oxidation (Fig 8.27). 

Fig.8.26 SEM images of the oxide surfaces for as-received NiPtAl coatings (without TBC top coat) after 
2h/15min cyclic oxidation for 100h at 1100°C in air, a): low-aAl, and b): high-aAl coatings 

a) 

100�m 100�m 

b) 

Fig.8.27 SEM images of the oxide surface for as-received NiPtAl coatings (without TBC top coat) 
after 2h/15min cyclic oxidation for 1000h at 1100°C in air, a): low-aAl, and b): high-aAl coatings 

a) 

100�m 100�m 

b) 

Fig.8.25 Effect of polishing treatment prior to oxidation on the residual compressive stress in the oxide scale 
formed on the NiPtAl coatings (without TBC topcoat) after cyclic oxidation at 1100°C in air, a):low-aAl, b): 
high-aAl coatings 
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Fig 8.28 shows PSLS oxide stress measurements in the vicinity of the coating grain boundary for the 

oxidized low-aAl NiPtAl coating. The stress in the center of the coating grain is significantly higher 

and the scatter is much less compared to that on the ridges. This observation can explain why a much 

lower stress is measured on the non-treated NiPtAl surfaces after oxidation, than for the TBC-coated 

sides (following shown in Fig 8.29) and polished surfaces. In the former case the stress is partly 

relaxed by out-of-plane deformation, whereas in the latter case the oxide is under a more uniform, 

biaxial compression. As the surface of the high-aAl NiPtAl coating is significantly more convoluted 

than that on the low-aAl coating, statistically random locations for stress measurements should provide 

more “relaxed” stress values resulting in a lower average stress in case of the high-aAl bondcoat, which 

is indeed experimentally observed. 

 

The reason for higher residual stress on the “flat” TBC coated sides of the high-aAl bondcoat than that 

on the low-aAl bondcoat might be related to a larger volume fraction and/or to a more homogeneous 

distribution of the ��-phase in the high-aAl coating. These factors could effectively strengthen the 

coating thereby reducing the overall stress relaxation in the oxide by coating creep during cooling, a 

mechanism which was suggested in [89] to be important for metallic coatings, such as MCrAlY. 

 

Fig 8.29 presents the residual stress in the oxide for the low and high-aAl NiPtAl bondcoats with and 

without TBC after discontinuous oxidation at 1100°C in air. For the low-aAl coating (Fig 8.29a) on the 

side with TBC, the stress after 1h oxidation was about 3.0GPa, and increased to a peak value of 3.3 

GPa, then slowly decreasing to 3.0GPa. A small deviation for the stress in the oxide on the side with 

TBC could be observed. In contrast, the oxide stress on the side without TBC had a large scatter up to 

2.0GPa. The average oxide stress on the side without TBC was by about 0.5GPa smaller than that on 

the side with TBC. Comparing oxide stress measurement with metallographic cross-sections in Fig 

8.20 these observations can be explained by the fact that the TBC top coat suppressed the rumpling of 

the bondcoat, which resulted in a build up of a higher stress compared to the sides without TBC, where 

Fig.8.28 Effect of ridges on residual stress in oxide on low-aAl coating (without TBC top coat) exposed in 
the as-aluminized condition after 2h/15min cyclic oxidation for 100h at 1100°C in air, a): SEM images of 
ridges, b): stress in oxide on the ridge and on flat oxide scale. Red line indicates measurement data range
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the oxide stress was partly relaxed by the bondcoat deformation (rumpling). These arguments are the 

same as suggested by other authors [94]. 

 

Microstructures of the low-aAl and high-aAl NiPtAl coatings were analysed using EBSD on the 

specimen sides without TBC. Fig 8.30 shows the top view of polished NiPtAl coatings prior to 

oxidation. The low-aAl coating (Fig 8.30a) was single-phase �-NiAl with an average grain size of 

approximately 100 ± 50 �m. The high-aAl coatings were two-phase (�-NiAl and PtAl2) in agreement 

with the XRD data in Fig 8. 3. 

 

Fig 8.31 shows an EBSD pattern of the low-aAl coating in normal direction which shows a random 

grain orientation. The �-NiAl orientation could affect oxide scale formation especially in the early 

stages of exposure. For example, scales formed on (111) of the �-NiAl orientation were found to be 

thicker than scales on (001) orientation specimens after equal oxidation times [160]. Fig 8.32 shows 

the EBSD patterns for NiAl and PtAl2 phases in the high-aAl coating. The two-phase grain orientation 

in the high-aAl coating is random.  

 

(b) 2μm 

PtAl2 

Fig. 8.30 SEM pattern of polished coatings prior to oxidation, a): low-aAl, EBSD-map , b): high-aAl, 
secondary electron (SE) image 

70μm (a) 

Fig.8.29 Residual compressive stress measured by PSLS in alumina scales formed on NiPtAl coating 
with and without TBC after discontinuous oxidation at 1100°C in air, a):low-aAl, b): high-aAl coatings 
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To investigate the intrinsic oxidation behavior of NiPtAl coatings, specimens were polished to 1�m 

before oxidation. Fig 8.33 shows the SEM images for the surfaces of NiPtAl coatings after 8h 

oxidation in Ar-20%O2. Tensile cracks in the oxide and local oxide spallation as well as oxide re-

growth could be observed for the low-aAl coating (Fig 8.33a). Void formation underneath the oxide 

scale was seen in the places where the oxides had spalled. The formation of radial cracks (Fig 8.33c) 

in the oxide scales on Ni-aluminides was attributed to the oxide volume shrinkage due to the 

transformation of metastable 
-Al2O3 to �-Al2O3 phase [151]. The high-aAl coating exhibited another 

oxide surface morphology, showing a “network” of oxide ridges and no oxide spallation could be 

found.  

 

Comparison of the surface morphologies in Fig 8.33 indicates that the transformation of 
 to �-Al2O3 

occurred earlier for the high-aAl than for the low-aAl coating, although only �-Al2O3 was found with 

PSLS on both coatings after 8 h exposure at 1100°C. Fig 8.34 shows that differences in oxide 

morphologies on the polished surfaces remained after much longer exposure times (1000h). The 

Fig.8.31 EBSD pattern for low-aAl NiPtAl coating (normal direction to the coating surface) 

70�m 

   Fig.8.32 EBSD for high-aAl NiPtAl coating (normal direction to the coating surface) 

NiAl

1�m 

PtAl2

1�m 



109 
 

specimen surface of the low-aAl coating shows local oxide spallation and voids (Fig 8.35), which 

cannot be observed on the high-aAl coating. 

 

The oxide morphologies for the low-aAl and high-aAl NiPtAl coatings after isothermal oxidation at 

1100°C for 1000h in air are shown in Fig 8.34. Pieces of locally spalled alumina scale were found on 

the low-aAl coating. White particles on the top of the oxide can be observed (Fig 8.34c), which were 

(Ta,Ti,Hf)-rich oxides confirmed by EDX analysis. Apparently Ta, Ti and Hf diffused from the 

CMSX-4 base alloy into the coating and became incorporated into the TGO. The flat and homogenous 

oxide scale on the high-aAl coating is presented in Figs 8.34b and d. With increasing the oxidation time 

to 1000h, the ridges observed after 8 h (Fig 8.33) disappeared. The TGO outward growth probably 

resulted in overgrowth of the initially formed ridges. Whisker-like alumina could be observed on the 

top of oxide scale in Fig 8.34d, which illustrated significantly different oxide morphologies between 

low-aAl and high-aAl coatings.   

 

An interesting observation for the low-aAl coating was that large voids were observed locally 

underneath the oxide scale even after long time exposure (1000h at 1100°C) as shown in Fig 8.35. The 

oxide scale above the voids tended to spall during the cooling stages. This type of voids was already 

observed in similar coatings systems by other researchers [161-162]. The reasons for the void 

formation at the oxide/metal interface during oxidation are still in debate. One hypotheses based on 

diffusion phenomena was proposed in references [79, 163], whereby the alumina scale formation  

Fig. 8.33  SEM images for the surface of NiPtAl coatings after 8h oxidation at 1100°C in Ar-20%O2, a) 
and c): low-aAl;  b) and d): high-aAl coatings 
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was assumed to induce the Al and Ni concentration gradients in the coating. The difference in the Ni 

and Al diffusion fluxes might be compensated by vacancies. These vacancies could coalesce and form 

interfacial voids according to Kirkendall mechanism [163]. The Al consumption from �-NiAl might 

simply create Al vacancies, which can coalesce to form interfacial voids [77, 164]. Some authors 

considered that these voids could be associated with a very high frequency of thermal cycling [165]. 

Tolpygo et al [94] found that the transformation of �-NiAl to the ��-Ni3Al phase could lead to a 

volume reduction of 16~38%, which depended on the used calculation procedure. The volume 

reduction could contribute not only to the surface rumpling but also to the formation of interfacial 

voids. In the present study, thermal cycling did not prevail. Comparison of Fig 8.35 with 8.33 

Fig 8.34 SEM images for the oxide on the polished NiPtAl coatings after 1000h isothermal oxidation 
at 1100°C in air, a) and c): low-aAl, b) and d): high-aAl coatings 

a) 

100�m 100�m 

b) 

c) 

2�m 
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2�m 

Fig 8.35 SEM images for the low-aAl coatings after 1000h isothermal oxidation at 1100°C in air, a): 
low and b): high magnification 
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indicates that void formation can be associated with metastable alumina formation in the initial stages 

of exposure. Outward growing metastable 
-Al2O3 could result in vacancy injection to the 

oxide/bondcoat interface, as suggested by other authors for NiAl oxidation [166]. Increase in the void 

size with increasing exposure time can be explained e.g. by S-segregation to the void surface, which 

was proposed to accelerate void growth [167]. These voids can be filled up again by stable �-alumina 

during oxidation. 

8.3.2 Effect of temperature cycling conditions and water vapor on the lifetimes of TBC’s with the 
NiPtAl coatings 

Fig 8.36 shows lifetimes of EB-PVD TBC systems with low-aAl and high-aAl NiPtAl bondcoats during 

cyclic oxidation at 1150°C in various atmospheres. It can be seen that changes in the atmosphere with 

respect to water vapor content have no significant effect on the lifetimes of both studied TBC systems.   

 

Fig 8.37 presents the cross-sections of the failed TBC systems with NiPtAl coatings after cyclic 

oxidation at 1150°C using 2h/15min and 4h/1h cycles. The delamination for the TBC systems in all 

cases occurred at the TGO/ bondcoat interface. A high fraction of �-NiAl phase could still be found in 

the cross-sections of the low-aAl as well as high-aAl coatings. The TGO thickness was about 7~8�m 

when the TBC occurred failure after the two different cyclic oxidation parameters. Comparison with 

the cross-sections at 1100°C shown in Fig 8.12, showed that more �-phase was presented in the 

coating after oxidation until failure at 1150°C than at 1100°C. Because of the similar TGO thickness at 

occurrence of failure at 1100°C and 1150°C, the Al consumption induced by oxide scale formation 

should be similar at high temperature. Therefore, the more extensive � transformation to �� at 1100°C 

is due to more extensive Al-diffusion into the base alloy after a longer exposure time.  

 

 

Fig.8.36 Lifetime for EB-PVD-TBC with the NiPtAl coatings after 4h/1h cyclic oxidation at 1150°C 
in air+10%H2O and laboratory air. Also included the lifetime data after 2h/15min cyclic oxidation 
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Fig 8.38 shows similar TGO morphologies and thicknesses for the TBC systems with NiPtAl coatings 

after exposure in laboratory air and in air+10%H2O. The similar TGO morphologies and thickness for 

TBC failure under different cyclic conditions, H2O content as well as at 1100°C and 1150°C could be 

observed. These above changes of conditions did not result in a change of lifetime of the TBC systems 

(Fig 8.36), which indicated that the critical TGO thickness plays a major role in determining the 

lifetime of TBC systems with NiPtAl-bondcoats. 

Fig.8.37 Optical cross-section of EB-PVD-TBC with NiPtAl coatings after 2h/15min (a and c) and 4h/1h 
(b and d) cyclic oxidation till TBC failure at 1150°C in air, a) and b): low-aAl coating: c) and d):  high-aAl 
coating 

25�m 

a) b) 

c) d) 

25�m 25�m 

25�m 

Fig.8.38 Optical images for EB-PVD TBC with low-aAl  (a, b) and high-aAl (c, d) BC after 4h/1h cyclic 
oxidation till TBC failure at 1150°C, a) and c):  Synthetic air; b) and d ): Air+10%H2O  

a) 

25�m 

b) 

25�m 

c) 

25�m 

d) 

25�m 



113 
 

It should be noted that in the 4h heating/1h cooling test the specimens were exposed in a quartz 

recipient in order to have a direct comparison between the dry and wet air. This resulted in 

significantly lower heating/cooling rates of the speciemens as compared to the 2h heating /15min 

cooling cycles, where no quartz recipient was used and the cooling was performed using pressurized 

air.  

 

Nevertheless, considering the statistical nature of TBC failure, the more severe cyclic conditions in the 

2h/15min test have not resulted in significant shortening of the TBC lifetime. TBC life appears to be 

mainly governed by the time at temperature. The absence of a water vapor effect on the lifetime of 

EB-PVD TBC systems with NiPtAl coating differs from EB-PVD TBC systems with MCrAlY 

bondcoats (chapter 6.3.2). For the latter system, a significant detrimental effect was observed.  

 

In reference [107] it was argued that deterioration of scale adherence by water vapor is more strongly 

pronounced for systems with a poorer oxide scale adherence. Therefore it is possible that NiPtAl 

bondcoats, which are known to possess a superior scale adherence in the cyclic oxidation test, are less 

sensitive to the adverse influence of water vapor than MCrAlY bondcoats. It was shown [67] that in 

the latter coatings the scale adherence crucially depends on the interaction of Y with impurities such as 

oxygen introduced during coating manufacturing and, in addition, Y is subjected to depletion during 

the oxidation process. In NiPtAl coatings the Pt content is significantly higher that that of Y. 

Therefore, even though Pt is depleted due to diffusion into the superalloy, this process is significantly 

slower than that of Y-depletion due to a much larger Pt reservoir. Therefore the positive effect of Pt on 

Al2O3-scale adherence is retained up to much longer times than that of Y. 
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9 Summary 

In the present project the oxidation behavior and lifetime of different TBC-systems based on yttria 

stabilized zirconia (YSZ) under varying exposure conditions has been studied. The range of 

investigated materials included EB-PVD-TBC systems with MCrAlY and NiPtAl bondcoats as well as 

APS-TBC systems with MCrAlY bondcoats. For systems with MCrAlY-bondcoats the effects of 

major bondcoat composition (Co-content), minor addition (Zr and O contents) and for those with 

NiPtAl bondcoats the effects of aluminizing parameters (low Al activity vs. high Al activity process) 

have been investigated. The variation of testing parameters comprised high temperature and low 

temperature dwell times, cooling rate, water vapor content and, for selected systems, also the oxygen 

partial pressure (pO2) in the atmosphere.  

 

 The results of the first part of the study on EB-PVD TBC systems with MCrAlY-type bondcoats 

showed that the lifetime in cyclic oxidation test is significantly affected by the main bondcoat-

composition, in particular the Co-content. The lifetime was significantly longer in case of CoNiCrAlY 

bondcoats than with NiCoCrAlY bondcoats. This was attributed to a more stable coating 

microstructure, resulting in a lower CTE of CoNiCrAlY bondcoat resulting in lower thermal mismatch 

stresses generated in the oxide scale upon cooling.  

 

The positive effect of co-doping MCrAlY bondcoats with Zr on the EB-PVD TBC lifetime observed 

in previous studies [67] was found to strongly depend on the used cycling parameters. This was related 

to the specific mechanisms of the oxide scale formation: locally enhanced inward growth due to 

incorporation of ZrO2 precipitates into the alumina scale resulting in a convoluted scale/bondcoat 

interface. Consequently, during cyclic oxidation the failure of the TBC system with Y/Zr-doped 

bondcoat was initiated by crack formation within the oxide scale and at the scale/TBC interface. Due 

to the fact that the cracks formed at different locations with respect to out of plane direction, the TBC-

lifetime was mainly limited by the growth rate of individual cracks. Crack growth was higher in a test 

with a high cycling frequency (2 h-cycle) compared to that in a low frequency (166 h-cycle) test. As a 

result, the lifetime of TBC-system with Zr-doped bondcoat was a factor of two shorter in the test with 

2 h than in that with 166 h-cycle. It is important to note that even under 2 h-cycle tests, the lifetime of 

the TBC with a Zr-doped bondcoat was about 50% longer than that of the system with NiCoCrAlY-

bondcoat of the same composition, however, without Zr-addition. In the latter case the failure occurred 

at the flat oxide scale/bondcoat interface upon reaching a critical oxide scale thickness whereby the 

time to failure was independent of the cycling parameters. 

 

Studies of an EB-PVD-TBC system with Y/Zr-doped bondcoat revealed that the lifetime is not 

extended in an atmosphere with a low pO2 (H2/H2O-mixture) compared to that in a high pO2 gas (e.g. 
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air), as was observed previously [25]  in the system with conventional MCrAlY-bondcoat without Zr. 

This observation could be attributed to a different scale growth mechanism (mainly oxygen diffusion 

in zirconia precipitates) on the former, Y/Zr-codoped bondcoat as compared to oxygen grain boundary 

diffusion in a rather pure alumina scale on the Zr-free bondcoat. Accordingly, the scale growth rate on 

the Zr-doped bondcoat appeared to be initially determined by oxygen diffusion via oxygen vacancies 

in zirconia, which was shown to be virtually independent of pO2 in the atmosphere. The situation was 

different in the case of the Zr-free bondcoat, where the scale growth was reduced in the low PO2 gas 

mainly due to reduction of the oxygen potential gradient, i.e. the driving force for oxygen diffusion 

along alumina grain boundaries. 

 

Increase of water vapor content in the high pO2 test atmosphere from about 2 to 20 % was detrimental 

for the lifetime of EB-PVD TBC systems with MCrAlY-type bondcoats. Moisture-induced spallation 

could be an operating mechanism adversely affecting the Al2O3 scale adhesion. This result indicates 

that the lifetimes of EB-PVD TBC systems with MCrAlY-type bondcoats in hydrogen gas-turbines in 

IGCC power plants operating with a significantly higher water vapor content in the exhaust gas may 

be significantly reduced compared to conventional turbines burning natural gas. 

 

Studies of APS-TBC systems revealed that, similar to the observation made for the EB-PVD TBC 

systems, CoNiCrAlY-bondcoats can provide a longer lifetime due to a more stable bondcoat 

microstructure as compared to NiCoCrAlY bondcoats. It was, however, found that the rough bondcoat 

surfaces of Co-base MCrAlY coatings are more susceptible to non-protective oxidation with formation 

of Co-rich spinel oxides, which can serve as sites for crack initiation during temperature cycling 

leading to significant shortening of the APS-TBC lifetime. This adverse effect can be suppressed by a 

minor (few micrometers) Al-enrichment at the bondcoat surface resulting from Cr-evaporation, which 

occurs during coating heat-treatment in high vacuum.  

 

The lifetime of APS-TBC systems with Ni-base MCrAlY bondcoats, which tend to form rather pure 

alumina scales, is significantly longer with porous TBC and a porous bondcoat which exhibits high 

roughness and convoluted morphology than that with a dense TBC and dense bondcoat featuring a 

“sinusoidal” roughness profile. For the former system repeated oxide scale delamination and re-

growth was observed in the convex parts of the bondcoat surface, indicating that occurrence of oxide 

delamination on bondcoat hills did not lead to immediate TBC-failure. The repeated oxide 

delamination /re-growth was not observed in systems with dense TBC and bondcoat. Using the TBC 

system with dense bondcoat and porous TBC it could be demonstrated that the bondcoat roughness 

and surface profile play, in addition to the TBC properties, an important role in governing the time to 

failure of an APS-TBC system. 
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A higher water vapor content in the test atmosphere appeared to have no significant effect on the 

lifetime of APS-TBC systems, contrary to the observations made with EB-PVD TBC systems. This 

could be attributed to differences in the failure mechanisms between the two system types. The crack 

propagation rate through the ceramic YSZ topcoat, which determines the failure of APS-TBC systems, 

seems to be not significantly affected by the presence of water vapor in the test gas.   

 

Variation of temperature cycling parameters showed that the lifetime of APS-TBC systems can be 

affected by the cyclic frequency. Shorter cycles result in more rapid crack initiation and propagation 

resulting in a shortening of the TBC-lifetime. In contrast, the cooling rate within the range studied 

seems to have no significant effect on the system lifetime. 

 

In general, it could be concluded that, contrary to EB-PVD TBC systems, for APS-TBC’s no critical 

TGO-thickness for failure can be defined, since the lifetime depends to a large extent on the crack 

propagation rate in the TBC. As shown above, the rate of crack growth depends substantially on the 

microstructural properties of the systems, which in turn are determined by the coating spraying 

parameters. 

 

Cyclic oxidation lifetimes of EB-PVD TBC systems with Ni(Pt)Al bondcoats on a single crystal 

superalloy appeared to be significantly longer than those of commonly TBC systems with MCrAlY-

bondcoats on polycrystalline superalloys. Although the difference in lifetime can be partly related to 

the different base materials used, it can be argued that the growth rate of the alumina scale is lower 

and the critical scale thickness for failure is larger for Ni(Pt)Al coatings than for MCrAlY-coatings. 

The latter observation might be attributed to the positive effect of Pt on the alumina scale adherence 

and makes the EB-PVD-TBC systems with NiPtAl bondcoats potentially attractive for application in 

gas-turbines in spite of the high cost of Pt. The above most important effects of various parameters on 

the crack formation and lifetime of various TBC-systems are summarized schematically in Fig 9.1. 

 

Studies of EB-PVD TBC systems with two types of NiPtAl bondcoats produced by low and high Al-

activity aluminizing processes revealed very similar oxidation behavior and lifetime. The lifetimes of 

the TBC systems with NiPtAl bondcoat were not significantly affected by changing the cycling 

frequency or by higher water vapor content in the test atmosphere.     

 

Finally, the presence of the TBC was observed to suppress the differences in metastable alumina 

formation and the frequently observed rumpling of the NiPtAl coatings in thermal cyclic test, which 

were clearly pronounced for low and high Al activity coatings on the sides without TBC. If the TBC 

was absent the low Al-activity coating was shown to have a longer time to transformation from theta 

into alpha alumina. The rumpling parameters, such as wavelength and surface tortuosity were clearly  
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different between the two studied aluminized coating types. The rumpling was, however, not observed 

on the specimen sides coated with the TBC, which failed on both bondcoats by delamination at the 

scale/bondcoat interface at a similar critical TGO thickness. 

 

 

 

 

 

 

 

 

 

Fig 9.1 Schematic influence of material and testing parameters on crack formation and lifetime of a) EB-
PVD and b) APS TBC lifetime; t1
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