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Abstract: In this paper a rapid and highly efficient method for controlled incorporation  

of fluorescent lipids into living mammalian cells is introduced. Here, the fluorescent 

molecules have two consecutive functions: First, they trigger rapid membrane fusion 

between cellular plasma membranes and the lipid bilayers of their carrier particles, so 

called fusogenic liposomes, and second, after insertion into cellular membranes these 

molecules enable fluorescence imaging of cell membranes and membrane traffic processes. 

We tested the fluorescent derivatives of the following essential membrane lipids for membrane 

fusion: Ceramide, sphingomyelin, phosphocholine, phosphatidylinositol-bisphosphate, 

ganglioside, cholesterol, and cholesteryl ester. Our results show that all probed lipids could 

more efficiently be incorporated into the plasma membrane of living cells than by using 

other methods. Moreover, labeling occurred in a gentle manner under classical cell culture 

conditions reducing cellular stress responses. Staining procedures were monitored by 

fluorescence microscopy and it was observed that sphingolipids and cholesterol containing 

free hydroxyl groups exhibit a decreased distribution velocity as well as a longer 

persistence in the plasma membrane compared to lipids without hydroxyl groups like 

phospholipids or other artificial lipid analogs. After membrane staining, the fluorescent 

molecules were sorted into membranes of cell organelles according to their chemical 

properties and biological functions without any influence of the delivery system. 

Keywords: fusogenic liposomes; cellular membrane staining; fluorescent lipids; DiR; 

Bodipy FL-sphingomyelin; fluorescence microscopy 
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1. Introduction 

Our understanding of biological membranes has expanded markedly within the last century [1,2]. 

Studies using fluorescently labeled membrane lipid components have contributed considerably to this 

progress. For example, they have been successfully used for identification and localization of cell 

compartments like endoplasmic reticulum, Golgi apparatus, endosomes or lysosomes [3–7]. Using 

fluorescent reporter molecules cellular events with lipid participation like lipid domain formation, 

disaggregation and re-organization [8–14], lipid internalization, trafficking and degradation [7,9,15–18],  

or protein-lipid interactions [16,19] have been monitored in the last years. Beside cell biology, 

biophysical studies have also applied some fluorescent lipids to characterize the physical properties  

of lipid bilayers [20,21], like membrane polarity, fluidity, lipid asymmetry, or their diffusion  

dynamics [19,22–24]. 

To be useful in such biological experiments a fluorescently labeled molecule has to meet two 

stringent requirements. First, the properties of the fluorescent label must be matched to fast and very 

sensitive detection in microscopy and spectroscopy, and second, the tagged molecule should be a true 

reporter, i.e., its behavior must follow that of its untagged counterpart as closely as possible. These two 

expectations seem to be contradicting since fluorescent monitoring requires the presence of large 

aromatic moieties for excitation by visible light. Because natural membrane lipids do not have such 

molecular parts, their linkage to fluorescent groups, so called fluorophores, is essential to make them 

detectable by fluorescent microscopy. The most favored candidates for this purpose are fluorophores 

with high photostability, good molar absorptivities, high quantum yields, and emission maxima in the 

visible region, e.g., Bodipy-, Di-, or Atto-dyes.  

Once a fluorescently tagged lipid matching the experimental requirements has been found or 

synthesized it must be intercalated into the membranes of living cells which is often a surprisingly 

challenging endeavor. For this purpose several methods have been established and improved during 

the many decades of membrane research. The easiest but least effective way is incubation of living 

cells in a medium supplemented with fluorescent lipids. In this case, a small amount of labeled lipids is 

taken up by cellular endocytosis while other molecules are moved into or across the plasma membrane 

by energy-independent flippases [25]. For example, the fluorescent labeled ceramide derivate, Bodipy 

FL ceramide, can effectively be incorporated into cells in this way. It mostly accumulates in the Golgi 

apparatus, its primary accumulation site and to a lesser extent in the endoplasmic reticulum, its 

synthesis site [4,18]. Therefore this labeled lipid is widely used in cell biology studies for the 

identification and staining of these cellular compartments [3]. Some synthetic function-spacer-lipid 

constructs as well as artificial amphipathic molecules from the fluorescent Di-series, e.g., DiO and 

some DiIs, can also be easily and efficiently taken up from the cellular environment by the plasma 

membrane. Therefore they are used as plasma membrane staining molecules [26,27]. However, the 

structure of these molecules doesn’t mimic any natural membrane component. While the lipid flip-flop 

motion is an effective incorporation mechanism for some of the above mentioned lipids, it fails for 

most membrane lipids. Moreover, the efficiency of lipid uptake is in most cases low, resulting in weak 

fluorescent signals and problematic detection, correspondingly.  

Pagano and co-workers reported another technique in the early 80s to increase the lipid uptake [28]. His 

method rests on incubation of living cells with fluorescent lipids complexed to BSA at lower 
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temperatures, e.g., 4 °C for 30 min, and a subsequent rapid temperature increase to 37 °C. The 

incubation at low temperature causes the activation of protective cell mechanisms and results in 

slowed down cell functions. With increasing temperatures cell functions are accelerated including the 

endocytotic uptake of fluorescent lipids. After lipid uptake, the fluorescent molecules are sorted into 

cell organelles according to their biological properties allowing microscopic imaging. Pagano’s 

pioneering work allowed for the first time a successful fluorescence monitoring of lipid trafficking in 

living cells. For all that, this method has also some drawbacks. For example, the incubation at low 

temperature causes cellular stress responses [29,30]. Moreover, the increased cell endocytotic uptake 

of molecules yields still low fluorescent signal intensities which renders fluorescence detection difficult. 

To eliminate these drawbacks, a new method has been established for direct lipid insertion into the 

plasma membrane [31]. This technique is based on the observation that fluorescent lipids induce highly 

efficient and rapid membrane fusion between cellular plasma membranes and the lipid bilayers of their 

carrier particles containing neutral and positively charged lipids (Figures 1a,b). Liposomes of that kind 

are called fusogenic liposomes. By membrane fusion, the fluorescent lipid shell inserts into the plasma 

membrane immediately modifying its composition. Labelling takes place directly within the plasma 

membrane of living cells at classical cell culture conditions without any stress responses. In this 

method, the fluorescent molecules have two consecutive functions: First, they are essential for fusion 

triggering, which is not trivial. Second, after insertion into cellular membranes, these molecules allow 

the fluorescence imaging of cell membranes and membrane traffic processes. 

However, although all conventional fluorescently labeled lipids we tested up to now are able to 

trigger membrane fusion processes, a minimum concentration (2.5–5 mol%) is required to achieve this 

effect. In some cases such high amounts of a labeled lipid molecule could completely falsify the 

intended membrane study, e.g., cholesterol strongly influences membrane stiffness, lipid miscibility 

and micro domain formation already at low amounts [32]. To tackle this problem we introduce here an 

improved lipid incorporation technique based on two different fluorescent lipids. One biologically 

irrelevant fluorescent component triggers the membrane fusion at a concentration of about 3 mol% 

while the amount of the second, biological active component, is only determined by the purpose of the 

study, e.g., the detection requirements of fluorescence imaging. In this study, fluorescently labeled 

ceramide, sphingomyelin, phosphocholine, phosphatidylinositol-bisphosphate, ganglioside, cholesterol, 

and cholesterol ester (see Figures 1d–j) have been delivered to the plasma membrane of living cells at 

different concentrations using fusogenic liposomes. Membrane fusion has been mainly triggered by 

DiR (Figure 1c), a biological irrelevant lipid analogue. Distributions of fluorophores have been 

monitored during fusion of liposomal and cellular membranes and the subsequent time period of up to 

two days. 
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Figure 1. Molecular structures and fluorescence spectra of the lipid derivates used in this study. 

 
(a) DOPE; (b) DOTAP; (c) DiR; (d) Bodipy FL-ceramide; (e) Bodipy FL-sphingomyelin;  

(f) -Bodipy-C12HPC; (g) TopFluor-PIP2; (h) Bodipy FL-GM1; (i) TopFluor-Cholesterol; and  

(j) Bodipy-cholesteryl ester. The fluorescence spectra were recorded in liposomal form and apply to 

the fluorophores circled in identical color. Although their fluorescence labels slightly differ (see d) 

through (i) they exhibit almost identical fluorescence spectra. 
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2. Results 

2.1. Identification of Cellular Organelles Using Organelle Specific Fluorescent Markers 

Lipid trafficking between cell organelles is essential for various cell functions. However, before 

application of our new lipid delivery system for the analysis of such cellular lipid transport processes, 

putative target organelles had to be identified. For this purpose cellular organelles were visualized by 

fluorescence staining procedures known from literature (see the Experimental section). Plasma 

membranes of CHO-K1 cells were labeled using the fluorescent lipid analogue Vybrant-DiI. After 

incubation with Vybrant-DiI the whole cell surface exhibited yellow fluorescence (Figure 2a). The 

Golgi apparatus and the endoplasmic reticulum were identified by addition of Bodipy FL-ceramide-BSA 

complex to the cell culture. Figure 2b shows an intensive green signal around the nucleus, the Golgi 

apparatus and a less intense filamentous signal, the endoplasmic reticulum. Cellular lysosomes were 

stained with LysoTracker Green. Its green signal appeared in the whole cell body (except the nucleus) 

as small dots slowly moving in the cytoplasm (Figure 2c). Cellular distributions of these fluorescent 

marker molecules were subsequently compared with the signal distribution of lipids delivered by 

fusogenic liposomes. It should be mentioned here, that beside lysosomes, other cytoplasmic vesicular 

structures like endosomes or trafficking vesicles display nearly similar staining. Their explicit 

identifications were not achieved within this study therefore all stained vesicular compartments 

regardless of their exact identities were defined as lysosome like structures. 

Figure 2. Identification of cellular organelles using organelle specific fluorescent markers. 

 
(a) Cellular plasma membrane of CHO-K1 cells was stained using Vybrant-DiI; (b) Golgi apparatus 

and endoplasmic reticulum staining were verified by Bodipy FL-ceramide-BSA incorporation; (c) 

Cellular lysosomes were visualized by LysoTracker Green. Scale bars 10 µm. 

2.2. Incorporation of Bodipy FL-Sphingomyelin and DiR into Cardiac Fibroblast Using  

Fusogenic Liposomes 

To demonstrate the staining ability of fusogenic liposomes and to temporarily resolve the fusion 

process, the plasma membranes of rat embryonic cardiac fibroblasts were stained using such liposomes 

containing the artificial fluorescent lipid DiR (Figure 1c) and the chain labeled sphingomyelin derivate 

Bodipy FL-SM (Figure 1e) (DOPE/DOTAP/DiR/Bodipy FL-SM = 1/1/0.05/0.05 w/w). The fusion 
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process was recorded by confocal laser scanning microscopy (see also Supplemental Movie 1). The 

advantage of using cardiac fibroblasts was their distinct flat cell body, which allowed simultaneous 

recording of upper and lower plasma membrane. Before vesicle addition (Figure 3: 0 s) no fluorescent 

signal was detected. Few seconds later, when the vesicles sedimented onto the cell surface, small 

yellow dots, green in the Bodipy FL-SM channel and red in the DiR channel, were detected. After 

membrane contact fluorescently labeled cell membranes appeared. This process was repeated several 

times during the observation time window of 8 min reaching a complete membrane staining (see also 

Supplemental Movie 1). Interestingly, the two fluorescent lipids did not fully co-localize with DiR 

distributing faster in the plasma membrane than Bodipy FL-SM (Figure 3: 30 s). However, these 

differences disappeared after a few minutes (Figure 3: 320 s) and the plasma membranes were 

homogenously labeled by both fluorescent molecules (compare Figure 2a and Figure 3: 320 s). 

Simultaneously with the homogenously stained plasma membrane the Golgi apparatus was saturated 

by Bodipy FL-SM while the endoplasmic reticulum contained both molecules (Figure 3: 480 s, see 

also Figures 2a,b). The analyzed cells showed no morphological changes during and after vesicle 

fusion. Cells remained adherent to the substrate and no membrane blebbing occurred. Even cell shape 

remained unaffected during the observation time of up to several hours. 

Figure 3. Plasma membrane staining with fusogenic liposomes. 

 
Fusogenic liposomes containing BFL-SM and DiR were used to incubate rat embryonic cardiac 

fibroblasts for 8 min. Before fusion the plasma membrane has not been stained (time 0 s). The 

cellular shape is highlighted by a white outline at this time. Upon fusion of liposomal and cellular 

plasma membranes the fluorescent lipids diffuse into the cellular plasma membrane and stain it. 

White arrows indicate membrane parts during merging of liposomal and plasma membranes (30 s 

and 320 s). The images show the overlay of the the green Bodipy FL-SM and red DiR channels. 

Yellow color indicates full signal co-localization while the appearance of green and red colors 

alone indicates signal disconnection. After homogenous plasma membrane staining the new 

components were sorted to the Golgi apparatus and the endoplasmic reticulum. However, Bodipy 

FL-SM was more enriched in the Golgi apparatus than DiR (480 s). Scale bar 50 µm. 

2.3. Cellular Distribution of Bodipy FL-Sphingomyelin and DiR in CHO-K1 Cells after Incorporation 

via Fusogenic Liposomes 

To follow the time dependent signal distribution of the chain labeled sphingomyelin, Bodipy  

FL-SM, and the lipid analogue DiR they were incorporated into CHO-K1 cells using fusogenic 

liposomes and the signal distributions were monitored over 48 h. The other cell type was chosen to 

demonstrate the ubiquitous staining ability of the liposomes. 30 min after vesicle fusion the main part 

of the green fluorescence signal of sphingomyelin was distributed between plasma membrane and 
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Golgi apparatus, with a smaller fraction localized in the endoplasmic reticulum (Figure 4: 0.5 h). A 

similar sphingomyelin distribution was also observed in cardiac fibroblasts immediately after lipid 

delivery (Figure 3: 480 s). This signal distribution could be detected over 48 h, however the signal 

intensity immensely decreased over this time period (Figure 4: 24 h and 48 h) due to cell proliferation. 

Figure 4. Cellular distribution of Bodipy FL-SM and DiR in CHO-K1 cells after 

incorporation via fusogenic liposomes. 

 
(a) The distribution of fluorescent Bodipy FL-SM was detected in the green channel while DiR  

was monitored in the red channel. Yellow color indicates full signal co-localization while the 

appearance of red and green alone indicates signal dislocalization. 30 min after vesicle fusion (0.5 h) 

both dyes almost equally stained the plasma membrane, the Golgi apparatus and the endoplasmic 

reticulum (yellow color). 24 h later the green Bodipy FL-SM remained mainly in the plasma 

membrane and in the Golgi apparatus while DiR was completely cleared from the plasma 

membrane and enriched in the Golgi apparatus and endoplasmic reticulum (24 h). Additional 24 h 

later DiR was found in lysosome like compartments while Bodipy FL-SM still remained in the 

plasma membrane and the Golgi apparatus (48 h), however, with strongly decreased signal 

intensity. To demonstrate the weak signal of Bodipy FL-SM after 24 h and 48 h signal intensities 

were additionally amplified. Scale bars 10 µm; (b) Viability test of CHO cells after administration 

of fusogenic liposomes composed of DOPE/DOTAP/DiR/BFL-SM (1/1/0.05/0.05 w/w). Non-vital 

cells were identified by Trypan blue staining at shown time points.  

Simultaneously with Bodipy FL-SM, DiR was also intercalated into the plasma membrane of  

CHO-K1 cells and its red fluorescence was monitored. After an intense plasma membrane–endoplasmic 

reticulum–Golgi apparatus staining (Figure 4: 0.5 h) DiR was rapidly cleared from the plasma 

membrane and the first labeled lysosome like compartments appeared 24 h after intercalation  
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(Figure 4: 24 h). Additional 24 h later some weak endoplasmic reticulum and strong lysosome like 

staining were observed (compare Figure 4: 48 h and Figure 2c). 

Viability assays were also carried out over 48 h after liposome administration to test staining 

toxicity over time. As Figure 4b shows, cell viability after staining with fusogenic liposomes was 

comparable with that of untreated cells (between 94 and 97%) and even total cell numbers did not 

differ (data not shown). 

2.4. Comparison of Lipid Incorporation Using Fusogenic Liposomes and BSA Complexes 

To demonstrate the increased staining ability of fusogenic vesicles compared to other techniques, 

CHO-K1 cells were incubated with fusogenic liposomes at 37 °C for 10 minutes or with fluorescent 

lipids complexed with bovine serum albumin (BSA) protein at 4 °C for 30 min and subsequently 

warmed up to 37 °C and incubated for further 30 min as described by Lipsky et al. [28]. As shown in 

Figure 5 all probed lipids, the chain labeled ceramide (Figure 1d), sphingomyelin (Figure 1e), 

phosphocholine (Figure 1f), phosphatidylinositol-bisphosphate (Figure 1g), ganglioside (Figure 1h), 

simultaneously with the lipid analog DiR (Figure 1c) (DOPE/DOTAP/DiR/fluorescent lipid = 1/1/ 

0.05/0.05 w/w) were successfully incorporated into the cellular plasma membrane by incubation with 

fusogenic liposomes (Figure 5: Fusogenic Liposomes). The fluorescence signals of all used lipids were 

adequate for microscopy. Cell shape and morphology of CHO-K1 cells remained uninfluenced during 

and after membrane fusion. 

Figure 5. Comparison of lipid incorporation using fusogenic liposomes and BSA complexes. 

 
Delivery of DiR in combination with Bodipy FL-ceramide, Bodipy FL-SM, -Bodipy FL-C12HPC, 

TopFluor-PIP2, and Bodipy FL-GM1 into living CHO-K1 cells using fusion vesicles (upper row) 

and BSA-lipid complexes (lower row). Each image shows the overlay of the red DiR and the green 

Bodipy channel. Please note, that identical microscope settings were used and that the total 

amounts of fluorescently labeled lipids were equal in fusogenic liposomes and the BSA-lipid 

complexes. The cellular shapes of CHO-K1s with low fluorescence intensity are highlighted by 

white outlines. Scale bars 10 µm. 
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Using the same amount of lipids like above but complexed to BSA all probed molecules showed 

weak membrane intercalation and were mainly localized in endosomes/lysosome like compartments 

with the exception of ganglioside and ceramide (Figure 5: BSA-complexes). These reached the Golgi 

apparatus at high concentration and the endoplasmic reticulum at lower concentration. In some cases a 

weak endocytotic incorporation of DiR was also observed (red dots in Figure 5: BSA-Lipid Complexes). 

Parallel to the overall low fluorescent intensity, almost all cells showed obvious membrane blebbing 

(see the pronged white outlines) and had a rather roundish cell shape compared to cell morphology 

before incubation with lipid-BSA complexes. This stress response was most likely induced by the cold 

shock and disappeared after some hours. 

2.5. Incorporation of Fluorescent Cholesterol Derivates into Cardiac Fibroblasts Using  

Fusogenic Liposomes 

Besides phospho- and glycolipids two different fluorescent cholesterol derivatives were also 

delivered to rat embryonic cardiac fibroblasts using fusogenic liposomes. The fluorescent cholesterol 

derivate TopFluor-cholesterol (Figure 1i) was mixed to the fusogenic lipid mixture in a concentration 

of DOPE/DOTAP/DiR/TopFluor-cholesterol = 1/1/0.05/0.025 w/w. Immediately after membrane 

fusion a green, homogenous plasma membrane staining was detected. Some minutes later the 

fluorescent cholesterol signal was distributed between plasma membrane, endoplasmic reticulum, 

Golgi apparatus and vesicular compartments (Figure 6a). These cholesterol-stained small and finely 

dispersed structures seemingly differed from those stained by LysoTracker Green (Figure 2c). The 

fluorescence signal of DiR was collected in the red channel but not shown in Figure 6a to avoid 

obscuring the green signal. 

Figure 6. Incorporation of cholesterol derivatives into cardiac fibroblasts using fusogenic liposomes. 

 
(a) TopFluor-cholesterol delivered by fusogenic liposomes was localized in the plasma membrane, 

endocytic recycling compartments, Golgi apparatus and endoplasmic reticulum of rat embryonic 

cardiac fibroblasts 1 h after intercalation; (b) Bodipy-cholesteryl ester was first delivered to the 

cellular plasma membrane but immediately after incorporation it was transported from the plasma 

membrane into lysosome like compartments. The cellular shape of the fibroblast is outlined in 

white color. Scale bars 50 µm. 
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The esterified fluorescent cholesterol analog, Bodipy-cholesteryl ester (Figure 1j), was also incorporated 

into the plasma membrane of fibroblasts by DOPE/DOTAP/Bodipy-cholesteryl ester = 1/1/0.1 w/w 

liposomes. In this case membrane fusion was induced by the cholesterol derivative itself. Because 

Förster resonance energy transfer (FRET) between Bodipy and DiR would completely quench the 

fluorescence signal of the cholesteryl ester we relinquish to use DiR for the exact cellular localization 

of Bodipy-cholesteryl ester. Shortly after plasma membrane staining, the fluorescent signal 

disappeared from the membrane and was localized in lysosome like compartments (Figure 6b).  

3. Discussion 

Fluorescently labeled membrane lipids are powerful tools for biological membrane studies with 

microscopic techniques. For these purposes, they have to meet the following needs: The molecules 

have to authentically mimic the properties of membrane components even after coupling of 

fluorophore and natural lipid. After labeling, an appropriate method is needed for the incorporation of 

the chemically modified membrane components into living cells and their membranes. And finally, 

they have to be sensitively detected by fluorescence microscopic techniques. 

In this study, a new method has been developed for effective fluorescent lipid incorporation into 

cellular membrane systems using commercial fluorescently labeled membrane lipids. Our system is 

based on positively charged phospholipid vesicles containing fluorescently labeled lipids or similar 

amphipathic molecules in a concentration of 2–5 mol%. This concentration of fluorophores containing 

delocalized electrons is sufficient to interact with the strong positive charges in the head group region 

of liposomes inducing temporal dipoles. These dipoles presumably yield local disorders of molecular 

arrangements in the bilayer and trigger membrane fusion processes with the plasma membrane as we 

proposed earlier [31]. Here, the determining factors are the high positive charge of liposomes as well 

as the molar ratio between positively charged and neutral lipids and aromatic compounds. After fusion, 

the liposome membranes rapidly merge with the cellular plasma membrane and make the latter visible 

for fluorescence microscopy. However, although only the fluorescent lipid is detected we assume that 

all lipid components of the vesicles are delivered into the plasma membrane. This statement is supported 

by the results on vesicles containing more than one fluorescent membrane of different mammalian cell 

types using positively charged lipid. In this work, DiR, a lipid mimicking amphipathic fluorophore 

together with sphingomyelin, a natural membrane component labeled by Bodipy FL, have been 

successfully incorporated in one step into the plasma vesicles (Figures 3 and 4). We also tested 

numerous other dye combinations like phospholipids, other sphingo- and glycolipids (see Figure 5), 

cholesterol (Figure 6) in combination with DiR or other members of the Di series or phospholipids 

combined with shingolipids (data not shown). Our results show that all labeled components successfully 

stained the plasma membrane in combination with each other. The main advantage of such combined 

fusogenic particles is the controlled delivery of fluorescent molecules in a broad concentration range. 

For example, one biologically irrelevant fluorescent component, e.g., DiR, can trigger the membrane 

fusion at a higher concentration, while the amount of the second, biological active component is  

freely adjustable. 

The distribution of the extrinsic fluorescent component in the cellular plasma membrane indicated a 

multi component chemical interplay in the membrane bilayer between the new molecules and cellular 



Molecules 2012, 17 1065 

 

 

membrane components. For example, lipids containing free hydroxyl groups like sphingolipids or 

cholesterol interact more strongly with other membrane components by hydrogen bonds than 

phospholipids, respectively [10]. These interactions could noticeably decrease the distribution velocity 

of these lipids in the new bilayer compared to molecules without hydroxyl groups like phospholipids 

or the members of the Di-series as we have observed (see Figure 3). Even on a nanoscopic scale, the 

strong interaction of sphingolipid analogs with other membrane components due to transient hydrogen 

bonding was proven by Mueller et al., whereas phospholipid analogs revealed weak interactions [33]. 

This molecular character influences the membrane persistence of new molecules on the short time 

scale, like during merging of vesicular and plasma membranes and subsequent lateral lipid mixing. In 

addition to this, lipids containing free hydroxyl groups show much longer plasma membrane 

localization on long time scales (e.g., over 48 h) than lipids lacking these hydroxyl groups. For 

example, comparing the membrane persistence of sphingomyelin and DiR, we have observed that 

sphingomyelin is located over several days in the plasma membrane while DiR is cleared from the 

plasma membrane in some hours (Figure 4). Although the fluorescent components enabled the 

observation of the molecular localization for such a long time, it should be kept in mind that there are 

several processes working in the cellular metabolism which could gravely change the originally 

delivered molecules during the observation period affecting our conclusions [18]. However, this 

systematic error would not only influence our method but also all other measurements and techniques 

applying fluorescent lipid derivates. 

After lipid merging, cellular mechanisms need distinct time periods to recognize the new 

components and to sort them according to their biological function and chemical properties. If the 

fluorescent labeling or the delivery system does not gravely change the chemical behavior of the 

original molecule it will be transported to its cellular destination after successful recognition. For 

example, the chain labeled ceramide delivered by fusogenic liposomes has been mainly accumulated in 

the Golgi apparatus, its primary accumulation site and in the endoplasmic reticulum, its synthesis  

site (Figure 4) [4,18]. It should be mentioned here that due to its high hydrophobicity this lipid is 

rapidly internalized from the environment even without any delivery system [3]. In this case, it is also 

mainly enriched in the Golgi apparatus and it slightly stains the endoplasmic reticulum, similar to our 

case or to the BSA-complexed delivery (Figure 4). Therefore we also used this fluorescent ceramide 

for the identification of the Golgi apparatus and endoplasmic reticulum. 

Although sphingomyelin or ganglioside are also sphingolipids, they strongly differ from ceramide 

in their head group region (Figures 1d,e,h) which results in low lipid uptake without a delivery system. 

Using positively charged delivery vesicles the chain labeled sphingomyelin could be directly inserted 

into the plasma membrane of different cell types. The main part of this signal remained in the plasma 

membrane over 48 h while the other part was identified in the Golgi apparatus (Figure 4) according to 

the cellular occurrence of sphingomyelin [18,34]. Based on its high hydrophobicity and the fact that, 

unlike ceramide, sphingomyelin cannot overcome the plasma membrane barrier without delivery 

system to reach the Golgi apparatus, we assume that the rapid transport of Bodipy FL-SM between 

plasma membrane and Golgi apparatus is due to sphingomyelin-transporter proteins [18]. It should be 

also mentioned here, that our delivery method is a gentle process for living cells contrarily to the lipid 

delivery by BSA-lipid-complexes. It is known from literature that sphingolipid traffic is strongly 
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influenced by stress factors [18]. Therefore avoiding environmental stress is a promising strategy in 

general and especially for studies focusing on sphingolipids.  

Beside sphingolipids some phospholipid derivates have also been probed for efficient cellular 

incorporation using fusogenic liposomes. The chain labeled phosphocholine first accumulated in the 

plasma membrane then was rapidly transferred to the Golgi apparatus [6] and the endoplasmic 

reticulum [35] as described by authors cited above. We suggest that this lipid was recognized and 

subsequently transported by phospholipid specific transporters [36]. Similar to phosphocholine the 

fluorescent derivate of the signal molecule phosphatidylinositol-bisphosphate has also been recognized 

by the cellular machinery and has been transported from the plasma membrane to the endoplasmic 

reticulum, presumably by specific phosphatidylinositol transfer proteins [37]. 

To demonstrate the ubiquitous ability of our fusogenic liposomes two fluorescent derivates of 

cholesterol have also been delivered to the plasma membrane of mammalian cells. One of them is 

labeled on the short side chain by Bodipy FL (see Figure 1i). This dye exhibits a relatively 

hydrophobic character and a small size. However, the fluorophore and cholesterol together are  

more than 50% larger than cholesterol alone. For all that, we found a similar distribution of  

TopFluor-cholesterol delivered by fusogenic vesicles as Hao et al. [17] for dehydroergosterol, the 

presumably best cholesterol analog. He observed an ergosterol distributed between plasma membrane, 

its accumulation place, endocytic recycling compartments, its transport system, and endoplasmic 

reticulum, its synthesis organelle. We could also identify the fluorescent signal of our cholesterol 

derivate in the plasma membrane as well as in the endoplasmic reticulum. The additional cytoplasmic 

vesicular signal could be rather assigned to endocytic recycling compartments then to lysosomes 

(compare Figure 2c and Figure 6a). As described by Hao et al. ergosterol is enriched in  

endocytic recycling compartments by transport processes between plasma membrane and Golgi  

apparatus [17]. Based on the similarities between ergosterol and TopFluor-cholesterol we assume that  

TopFluor-cholesterol stained also such compartments. 

The other cholesterol derivate is esterified on its hydroxyl-group by a fatty acid (C11) attached to a 

larger Bodipy-fluorophore (Figure 1j). The biological function of such cholesteryl ester is the storage 

of excess cellular cholesterol. Based on its conical molecular shape it doesn’t fit into the flat 

phospholipid bilayer but rather builds some droplets, so called cytoplasmic lipid droplets [15]. 

However, the Bodipy-labeling on the cholesteryl ester used in this study drastically changed the natural 

conical molecular shape to a rather dumbbell-shape, its cellular behavior doesn´t differ from that of its 

natural analog. As we observed Bodipy-cholesteryl ester was transported from the plasma membrane 

immediately after incorporation into lysosome like compartments, presumably into cytoplasmic lipid 

droplets indicating strong preference for droplet structures instead of flat bilayers. 

These data support our suggestion that the delivery system itself doesn´t influence the distribution 

behavior of the delivered fluorescent molecules. They can freely move in cellular membranes and their 

traffics are controlled by cellular processes. 
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4. Experimental 

4.1. Materials 

1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 1,2-dioleoyl-3-trimethylammonium-propane, 

chloride salt (DOTAP), 1-oleoyl-2-{6-[4-(dipyrrometheneboron difluoride)butanoyl]amino}hexanoyl-

sn-glycero-3-phosphoinositol-4,5-bisphosphate ammonium salt (TopFluor-PIP2), and 23-(dipyrro-

metheneboron difluoride)-24-norcholesterol (TopFluor-cholesterol) were purchased from Avanti Polar 

Lipids, Inc. (Alabaster, AL, USA). All other fluorescent lipids 1,1'-dioctadecyl-3,3,3',3'-

tetramethylindotricarbocyanine iodide (“DiR”; DiIC18(7)), 2-(4,4-difluoro-5-methyl-4-bora-3a,4a-

diazas-indacene-3-dodecanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine ( -Bodipy FL-C12HPC), 

N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl) sphingosine (Bodipy  

FL-ceramide), N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoyl)sphingosyl 

phosphocholine (Bodipy FL-SM), N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-

dodecanoyl)ganglioside (Bodipy FL-GM1), and cholesterol 4,4-difluoro-5-(4-methoxyphenyl)-4-bora-

3a,4a-diaza-s-indacene-3-undecanoate (Bodipy-cholesteryl ester) were ordered from Invitrogen 

(Eugene, OR, USA). The chemical structures of fluorescent lipids used in this study are shown  

in Figures 1a–j. 

4.2. Preparation of Fusogenic Liposomes 

Lipid components like DOPE, DOTAP, and the fluorescent lipids were mixed in chloroform in a 

weight ratio of DOPE/DOTAP/fluorescent lipid of 1/1/0.05–0.1. Chloroform was evaporated under 

vacuum for 0.5–1 h. Then, lipids were dispersed in 20 mM 2-(4-(2-hydroxyethyl)-1-piperazinyl)-

ethansulfonic acid (HEPES) buffer (VWR, Darmstadt, Germany) at a total lipid concentration of  

2.1 mg/mL. The solution was vortexed for approximately 1–2 min to produce multilamellar liposomes. 

After homogenization in an ultrasonic bath for 10–20 min, mainly unilamellar vesicles or liposomes 

were formed. 

For fusion experiments, liposome stock solution (10 L) was diluted 1/100 with appropriate cell 

culture medium (see cell culture) and gently shaken for 1–2 min at room temperature. Cells in a Petri 

dish (Ø = 3.5 cm), were incubated in fusogenic liposomes solution (pH 7.4, 1 mL) for 5–15 min at  

37 °C. Subsequently, the fusion mixture was replaced by fresh medium. 

4.3. Preparation of Lipid-Bovine Serum Albumin (BSA) Complexes 

One hundred µM fluorescent lipid stock solution (25 µL) and 1 mM DiR stock solution (2.5 µL) 

were dispensed into a small glass test tube and dried under vacuum for at least 1 h. The dried 

molecules were then dissolved in absolute ethanol (200 µL). Meanwhile, defatted BSA (3.4 mg, Merck 

KGaA, Darmstadt, Germany) was added to a HBSS/HEPES solution (10 mL, Hanks buffered salt 

solution and 10 mM HEPES, pH 7.4). The lipid-ethanol solution (200 µL) was then injected into the 

HBSS/HEPES solution (10 mL) while vortexing. This resulted in a final concentration of 250 nM 

fluorescent lipid, 250 nM DiR, 5 µM BSA and 2% (v/v) ethanol. For cell staining, cells were incubated 

with lipid-BSA complex solution (2 mL) on ice for 30 min. Afterwards, cells were rinsed with cold 
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PBS buffer and incubated in fresh cell culture medium for an additional 4 min at 37 °C before imaging 

began. Please note, that the total amount of fluorescent lipids added via lipid-BSA complexes was 

equal to the total amount added via fusogenic liposomes. 

4.4. Cell Culture 

4.4.1. Cardiac Fibroblasts  

Cardiac fibroblasts were isolated from 18-day old Wistar rat embryos as described earlier [38]. 

Cells were seeded on fibronectin coated glass surfaces [2.5 g/cm
2
 human plasma fibronectin (BD 

Biosciences, San Jose, CA, USA)]. Cells were maintained in F10 Ham’s medium (Sigma-Aldrich, St. 

Louis, MO, USA) supplemented with 10% fetal bovine serum, a 1/100 dilution of an antibiotic 

solution [10,000 units penicillin and 10 mg/mL streptomycin in 0.9% NaCl, (Sigma-Aldrich)] and a 

1/200 dilution of solution containing insulin (1 mg/mL), transferrin (0.55 mg/mL) and sodium selenite 

(0.5 µg/mL) in Earle’s balanced salt solution (EBSS) (Sigma-Aldrich). During culture as well as 

experimental steps, cells were kept at 37 °C and 5% CO2 in a saturated humid atmosphere. For 

liposome fusion and microscopy, 3,000 cells were seeded on fibronectin coated glass surfaces  

(2.5 g/cm
2
 human plasma fibronectin (BD Biosciences) two days prior to the experiment. 

4.4.2. Chinese Hamster Ovary K1 Cells (CHO-K1) 

CHO-K1 cells were purchased from American Type Culture Collection (ATTC, Manassas, VA, 

USA). They were maintained in DMEM-F12 (Sigma-Aldrich) supplemented with 10% fetal bovine 

serum and a 1/100 dilution of an antibiotic solution [10,000 units penicillin and 10 mg/mL 

streptomycin in 0.9% NaCl, (Sigma-Aldrich)]. During culture as well as experimental steps, cells were 

kept at 37 °C and 5% CO2 in a saturated humid atmosphere. Cell density never exceeded 80% 

confluence. For liposome fusion and microscopy, 6,000 cells were seeded on fibronectin coated glass 

surfaces (2.5 g/cm
2
 human plasma fibronectin, BD Biosciences) two days prior to the experiment.  

4.4.3. Cell Viability Test 

7.5 × 10
4
 CHO-K1 cells were seeded on small (Ø = 3.5 cm) cell culture dishes (Greiner, Solingen, 

Germany) one day prior to the experiment and maintained as described above. At the next day cell 

culture dishes with CHO-K1 cells at a confluency of approx. 40% were then treated with fusogenic 

liposomes containing DOPE/DOTAP/DiR/Bodipy FL-SM = 1/1/0.05/0.05 w/w as described in Section 

4.2. After membrane labeling, cells were incubated for 10 further minutes to allow proper distribution 

of the added lipids. Immediately, 24 h and 48 h after staining, cells were incubated with a 0.5% 

Trypsin/0.2% EDTA solution (1 mL, Sigma) for 3 min at 37 °C and collected by centrifugation at  

500 g for 3 min. The pellet was resuspended in phosphate buffered saline (PBS, pH 7.4). The cell 

suspension (20 µL) was then incubated with a 0.5% Trypan Blue (Sigma)/0.9% NaCl solution (80 µL) 

for 2 min at 37 °C. Afterwards, the relative amount of living cells was determined in a Neubauer 

counting chamber. The rate of living cells after membrane fusion was compared with an untreated 

control. Every time point was analyzed 5 times in independent experiments. 
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4.5. Identification of Cellular Organelles Using Organelle Specific Fluorescent Markers 

4.5.1. Plasma Membrane Staining 

Plasma membrane of CHO-K1 cells was stained using the lipophilic tracer molecule Vybrant-DiI 

(Invitrogen) [39]. Cells were incubated at 37 °C with 5 µM Vybrant-DiI in DMEM-F12 for 5 min, 

washed once with PBS and normal cell culture medium was added. Cells were imaged with a fluorescence 

microscope immediately after staining, so that no intracellular membrane staining occurred. 

4.5.2. Golgi Apparatus/Endoplasmic Reticulum Staining 

Golgi apparatus was stained using the method established by Lipsky et al. [27]. For that purpose, 

CHO-K1 cells, grown on glass cover slips, were incubated for 30 min. at 4 °C with 5 µM Bodipy  

FL-ceramide-BSA in PBS [see “Preparation of lipid-bovine serum albumin (BSA) complexes”]. 

Afterwards, cells were rinsed several times with ice-cold PBS and incubated in fresh cell culture 

medium at 37 °C for additional 30 min. The samples were then washed with fresh medium and 

examined using a fluorescence microscope. 

4.5.3. Lysosomes Staining 

Lysosomes were stained using the LysoTracker Green DND-26 (Invitrogen) [40]. CHO-K1 cells, 

grown on glass cover slips, were incubated with 50 nM of the LysoTracker, dissolved in cell culture 

medium, at 37 °C for at least 30 min. The LysoTrackr-containing medium was then replaced by fresh 

cell culture medium and samples were imaged using a fluorescence microscope.  

4.6. Fluorescence Microscopy 

Samples were imaged using a laser scanning microscope LSM 710 (Carl Zeiss MicroImaging 

GmbH, Jena, Germany) equipped with an argon ion laser (488 nm), a green helium neon laser  

(543 nm) and a red helium-neon laser (633 nm). To detect the fluorescent signal of BODIPY FL (ex. 

488 nm), a band pass filter BP 500–550 nm, for BODIPY TMR (ex. 543 nm) a long pass filter LP  

560 nm and for DiR (ex. 633 nm) also a long pass filter LP 650 nm was used. The emission spectra of 

these two dyes do not overlap. No FRET occurs between these two dyes. For the cell organelle 

stainings, LysoTracker Green DND-26 and Bodipy FL ceramide were excited at 488 nm and 

fluorescence signals collected using band pass filter BP 500–550 nm. DiI was excited at 543 nm and 

the fluorescence signal was collected using BP 550–600 nm. To avoid detection of autofluorescence 

background signals, laser intensities never exceeded 4% for the argon ion- and 10% for the  

helium-neon laser, respectively. The microscope was equipped with an oil immersion objective EC 

Plan-Neofluar 40×/1.30 Ph3 or a water immersion objective 40×/1.20 C-Apochromat (both from Carl 

Zeiss). To maintain appropriate culture conditions during experimental steps, the microscope was 

equipped with an incubator (Incubator XL 2, Carl Zeiss) and temperature as well as CO2 was kept at 

37 °C and 5%, respectively. The images were analyzed with the LSM 710 ZEN software (Carl Zeiss). 
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4.7. Fluorescence Spectroscopy 

The fluorescent spectra of the labeled lipids used in this study were recorded by a fluorescence 

spectrometer (Fluorolog-3, HORIBA Jobin Yvon, Edison NJ, USA). Lipids were prepared in 

liposomal form mixed to 1,2-dioleoyl-sn-glycero-phosphocholine (DOPC) in a molar ratio of 

DOPC/DiR, DOPC/ -Bodipy FL-C12HPC and DOPC/Bodipy-cholesteryl ester 200:1 mol/mol. We 

assume that the fluorescent spectra of the different Bodipy derivates, e.g., -Bodipy FL, Bodipy FL, and 

TopFluor do not differ significantly. The total lipid concentration was adjusted to 2 mg/mL in 20 mM 

Hepes buffer. Recording conditions like excitation and detection wavelengths were chosen similar to 

microscopical parameters. 

5. Conclusions 

The here introduced delivery method of fluorescent lipids to the plasma membrane of living cells is 

a rapid, simultaneously effective and gentle tool for controlled cellular membrane staining by almost 

arbitrary lipid molecules and for subsequent molecular traffic analysis. The fusion process between 

liposomal and cellular membranes appears to be a general one without cell type or lipid dependence. 

The intercalated components can immediately be monitored via their fluorescence over a period of up 

to 2 days without any perceptible cellular damages. This technique could also be useful for delivery of 

other fluorescently labeled membrane components e.g., proteins to living cells. 
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