000019790 001__ 19790
000019790 005__ 20210129210731.0
000019790 0247_ $$2DOI$$a10.1007/JHEP04(2011)001
000019790 0247_ $$2WOS$$aWOS:000290331700001
000019790 037__ $$aPreJuSER-19790
000019790 041__ $$aeng
000019790 082__ $$a530
000019790 084__ $$2WoS$$aPhysics, Particles & Fields
000019790 1001_ $$0P:(DE-HGF)0$$aEndrödi, G.$$b0
000019790 245__ $$aThe QCD phase diagram at nonzero quark density
000019790 260__ $$aBerlin$$bSpringer$$c2011
000019790 300__ $$a001
000019790 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000019790 3367_ $$2DataCite$$aOutput Types/Journal article
000019790 3367_ $$00$$2EndNote$$aJournal Article
000019790 3367_ $$2BibTeX$$aARTICLE
000019790 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000019790 3367_ $$2DRIVER$$aarticle
000019790 440_0 $$013263$$aJournal of High Energy Physics$$v4$$x1126-6708
000019790 500__ $$aWe thank T. Csorgo, C. Schroeder and G. I. Veres for useful discussion. Computations were performed on the BlueGene at FZ Julich and on clusters at Wuppertal and Budapest. This work is supported in part by DFG grants SFB-TR 55, FO 502/1-2 and the EU grant (FP7/2007-2013)/ERC n<SUP>o</SUP>208740.
000019790 520__ $$aWe determine the phase diagram of QCD on the mu - T plane for small to moderate chemical potentials. Two transition lines are defined with two quantities, the chiral condensate and the strange quark number susceptibility. The calculations are carried out on N-t = 6, 8 and 10 lattices generated with a Symanzik improved gauge and stout-link improved 2+1 flavor staggered fermion action using physical quark masses. After carrying out the continuum extrapolation we find that both quantities result in a similar curvature of the transition line. Furthermore, our results indicate that in leading order the width of the transition region remains essentially the same as the chemical potential is increased.
000019790 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing (FUEK411)$$cFUEK411$$x0
000019790 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x1
000019790 536__ $$0G:(EU-Grant)208740$$aQCDTHERMO - QCD thermodynamics on the lattice (208740)$$c208740$$fERC-2007-StG$$x2
000019790 588__ $$aDataset connected to Web of Science
000019790 65320 $$2Author$$aLattice QCD
000019790 65320 $$2Author$$aLattice Gauge Field Theories
000019790 65320 $$2Author$$aLattice Quantum Field Theory
000019790 650_7 $$2WoSType$$aJ
000019790 7001_ $$0P:(DE-Juel1)VDB73603$$aFodor, Z.$$b1$$uFZJ
000019790 7001_ $$0P:(DE-HGF)0$$aKatz, S.D.$$b2
000019790 7001_ $$0P:(DE-HGF)0$$aSzabó, K.K.$$b3
000019790 773__ $$0PERI:(DE-600)2027350-2$$a10.1007/JHEP04(2011)001$$gVol. 2011, p. 001$$p001$$q2011<001$$tJournal of high energy physics$$v2011$$x1126-6708$$y2011
000019790 8567_ $$uhttp://dx.doi.org/10.1007/JHEP04(2011)001
000019790 909CO $$ooai:juser.fz-juelich.de:19790$$pec_fundedresources$$pVDB$$popenaire
000019790 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000019790 9141_ $$y2011
000019790 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000019790 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x1
000019790 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000019790 970__ $$aVDB:(DE-Juel1)134777
000019790 980__ $$aVDB
000019790 980__ $$aConvertedRecord
000019790 980__ $$ajournal
000019790 980__ $$aI:(DE-Juel1)JSC-20090406
000019790 980__ $$aUNRESTRICTED