001     19790
005     20210129210731.0
024 7 _ |2 DOI
|a 10.1007/JHEP04(2011)001
024 7 _ |2 WOS
|a WOS:000290331700001
037 _ _ |a PreJuSER-19790
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Particles & Fields
100 1 _ |0 P:(DE-HGF)0
|a Endrödi, G.
|b 0
245 _ _ |a The QCD phase diagram at nonzero quark density
260 _ _ |a Berlin
|b Springer
|c 2011
300 _ _ |a 001
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 13263
|a Journal of High Energy Physics
|v 4
|x 1126-6708
500 _ _ |a We thank T. Csorgo, C. Schroeder and G. I. Veres for useful discussion. Computations were performed on the BlueGene at FZ Julich and on clusters at Wuppertal and Budapest. This work is supported in part by DFG grants SFB-TR 55, FO 502/1-2 and the EU grant (FP7/2007-2013)/ERC no208740.
520 _ _ |a We determine the phase diagram of QCD on the mu - T plane for small to moderate chemical potentials. Two transition lines are defined with two quantities, the chiral condensate and the strange quark number susceptibility. The calculations are carried out on N-t = 6, 8 and 10 lattices generated with a Symanzik improved gauge and stout-link improved 2+1 flavor staggered fermion action using physical quark masses. After carrying out the continuum extrapolation we find that both quantities result in a similar curvature of the transition line. Furthermore, our results indicate that in leading order the width of the transition region remains essentially the same as the chemical potential is increased.
536 _ _ |0 G:(DE-Juel1)FUEK411
|2 G:(DE-HGF)
|x 0
|c FUEK411
|a Scientific Computing (FUEK411)
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|x 1
|f POF II
536 _ _ |a QCDTHERMO - QCD thermodynamics on the lattice (208740)
|0 G:(EU-Grant)208740
|c 208740
|x 2
|f ERC-2007-StG
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a Lattice QCD
653 2 0 |2 Author
|a Lattice Gauge Field Theories
653 2 0 |2 Author
|a Lattice Quantum Field Theory
700 1 _ |0 P:(DE-Juel1)VDB73603
|a Fodor, Z.
|b 1
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Katz, S.D.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Szabó, K.K.
|b 3
773 _ _ |0 PERI:(DE-600)2027350-2
|a 10.1007/JHEP04(2011)001
|g Vol. 2011, p. 001
|p 001
|q 2011<001
|t Journal of high energy physics
|v 2011
|x 1126-6708
|y 2011
856 7 _ |u http://dx.doi.org/10.1007/JHEP04(2011)001
909 C O |o oai:juser.fz-juelich.de:19790
|p openaire
|p VDB
|p ec_fundedresources
913 2 _ |0 G:(DE-HGF)POF3-511
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |0 G:(DE-HGF)POF2-411
|1 G:(DE-HGF)POF2-410
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|v Computational Science and Mathematical Methods
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|g JSC
|k JSC
|l Jülich Supercomputing Centre
|x 0
970 _ _ |a VDB:(DE-Juel1)134777
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21