001 | 19790 | ||
005 | 20210129210731.0 | ||
024 | 7 | _ | |2 DOI |a 10.1007/JHEP04(2011)001 |
024 | 7 | _ | |2 WOS |a WOS:000290331700001 |
037 | _ | _ | |a PreJuSER-19790 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 530 |
084 | _ | _ | |2 WoS |a Physics, Particles & Fields |
100 | 1 | _ | |0 P:(DE-HGF)0 |a Endrödi, G. |b 0 |
245 | _ | _ | |a The QCD phase diagram at nonzero quark density |
260 | _ | _ | |a Berlin |b Springer |c 2011 |
300 | _ | _ | |a 001 |
336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
440 | _ | 0 | |0 13263 |a Journal of High Energy Physics |v 4 |x 1126-6708 |
500 | _ | _ | |a We thank T. Csorgo, C. Schroeder and G. I. Veres for useful discussion. Computations were performed on the BlueGene at FZ Julich and on clusters at Wuppertal and Budapest. This work is supported in part by DFG grants SFB-TR 55, FO 502/1-2 and the EU grant (FP7/2007-2013)/ERC no208740. |
520 | _ | _ | |a We determine the phase diagram of QCD on the mu - T plane for small to moderate chemical potentials. Two transition lines are defined with two quantities, the chiral condensate and the strange quark number susceptibility. The calculations are carried out on N-t = 6, 8 and 10 lattices generated with a Symanzik improved gauge and stout-link improved 2+1 flavor staggered fermion action using physical quark masses. After carrying out the continuum extrapolation we find that both quantities result in a similar curvature of the transition line. Furthermore, our results indicate that in leading order the width of the transition region remains essentially the same as the chemical potential is increased. |
536 | _ | _ | |0 G:(DE-Juel1)FUEK411 |2 G:(DE-HGF) |x 0 |c FUEK411 |a Scientific Computing (FUEK411) |
536 | _ | _ | |a 411 - Computational Science and Mathematical Methods (POF2-411) |0 G:(DE-HGF)POF2-411 |c POF2-411 |x 1 |f POF II |
536 | _ | _ | |a QCDTHERMO - QCD thermodynamics on the lattice (208740) |0 G:(EU-Grant)208740 |c 208740 |x 2 |f ERC-2007-StG |
588 | _ | _ | |a Dataset connected to Web of Science |
650 | _ | 7 | |2 WoSType |a J |
653 | 2 | 0 | |2 Author |a Lattice QCD |
653 | 2 | 0 | |2 Author |a Lattice Gauge Field Theories |
653 | 2 | 0 | |2 Author |a Lattice Quantum Field Theory |
700 | 1 | _ | |0 P:(DE-Juel1)VDB73603 |a Fodor, Z. |b 1 |u FZJ |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Katz, S.D. |b 2 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Szabó, K.K. |b 3 |
773 | _ | _ | |0 PERI:(DE-600)2027350-2 |a 10.1007/JHEP04(2011)001 |g Vol. 2011, p. 001 |p 001 |q 2011<001 |t Journal of high energy physics |v 2011 |x 1126-6708 |y 2011 |
856 | 7 | _ | |u http://dx.doi.org/10.1007/JHEP04(2011)001 |
909 | C | O | |o oai:juser.fz-juelich.de:19790 |p openaire |p VDB |p ec_fundedresources |
913 | 2 | _ | |0 G:(DE-HGF)POF3-511 |1 G:(DE-HGF)POF3-510 |2 G:(DE-HGF)POF3-500 |a DE-HGF |b Key Technologies |l Supercomputing & Big Data |v Computational Science and Mathematical Methods |x 0 |
913 | 1 | _ | |0 G:(DE-HGF)POF2-411 |1 G:(DE-HGF)POF2-410 |2 G:(DE-HGF)POF2-400 |a DE-HGF |b Schlüsseltechnologien |l Supercomputing |v Computational Science and Mathematical Methods |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |
914 | 1 | _ | |y 2011 |
915 | _ | _ | |0 StatID:(DE-HGF)0010 |a JCR/ISI refereed |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |g JSC |k JSC |l Jülich Supercomputing Centre |x 0 |
970 | _ | _ | |a VDB:(DE-Juel1)134777 |
980 | _ | _ | |a VDB |
980 | _ | _ | |a ConvertedRecord |
980 | _ | _ | |a journal |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|