000019791 001__ 19791
000019791 005__ 20210129210731.0
000019791 0247_ $$2DOI$$a10.1016/j.nuclphysa.2011.02.052
000019791 0247_ $$2WOS$$aWOS:000290196500038
000019791 0247_ $$2Handle$$a2128/21105
000019791 037__ $$aPreJuSER-19791
000019791 041__ $$aeng
000019791 082__ $$a530
000019791 084__ $$2WoS$$aPhysics, Nuclear
000019791 1001_ $$0P:(DE-HGF)0$$aRatti, C.$$b0
000019791 245__ $$aRecent results on QCD thermodynamics: lattice QCD versus Hadron Resonance Gas model
000019791 260__ $$aAmsterdam$$bNorth-Holland Publ. Co.$$c2011
000019791 300__ $$a253 - 256
000019791 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000019791 3367_ $$2DataCite$$aOutput Types/Journal article
000019791 3367_ $$00$$2EndNote$$aJournal Article
000019791 3367_ $$2BibTeX$$aARTICLE
000019791 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000019791 3367_ $$2DRIVER$$aarticle
000019791 440_0 $$04646$$aNuclear Physics A$$v855$$x0375-9474$$y1
000019791 500__ $$aRecord converted from VDB: 12.11.2012
000019791 520__ $$aWe present our most recent investigations on the QCD cross-over transition temperatures with 2+1 staggered flavours and one-link stout improvement [JHEP 1009:073, 2010]. We extend our previous two studies [Phys. Lett. B643 (2006) 46, JHEP 0906:088 (2009)] by choosing even finer lattices (N-t=16) and we work again with physical quark masses. All these results are confronted with the predictions of the Hadron Resonance Gas model and Chiral Perturbation Theory for temperatures below the transition region. Our results can be reproduced by using the physical spectrum in these analytic calculations. A comparison with the results of the hotQCD collaboration is also discussed.
000019791 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing (FUEK411)$$cFUEK411$$x0
000019791 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x1
000019791 588__ $$aDataset connected to Web of Science
000019791 650_7 $$2WoSType$$aJ
000019791 65320 $$2Author$$aquark-gluon plasma
000019791 65320 $$2Author$$aQCD thermodynamics
000019791 65320 $$2Author$$alattice QCD
000019791 7001_ $$0P:(DE-HGF)0$$aBorsányi, S.$$b1
000019791 7001_ $$0P:(DE-Juel1)VDB73603$$aFodor, Z.$$b2$$uFZJ
000019791 7001_ $$0P:(DE-HGF)0$$aHoelbling, C.$$b3
000019791 7001_ $$0P:(DE-HGF)0$$aKatz, S.D.$$b4
000019791 7001_ $$0P:(DE-Juel1)132171$$aKrieg, S.$$b5$$uFZJ
000019791 7001_ $$0P:(DE-HGF)0$$aSzabó, K.K.$$b6
000019791 773__ $$0PERI:(DE-600)1466542-6$$a10.1016/j.nuclphysa.2011.02.052$$gVol. 855, p. 253 - 256$$p253 - 256$$q855<253 - 256$$tNuclear physics <Amsterdam> / A$$v855$$x0375-9474$$y2011
000019791 8567_ $$uhttp://dx.doi.org/10.1016/j.nuclphysa.2011.02.052
000019791 8564_ $$uhttps://juser.fz-juelich.de/record/19791/files/1012.5215.pdf$$yOpenAccess
000019791 8564_ $$uhttps://juser.fz-juelich.de/record/19791/files/1012.5215.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000019791 909CO $$ooai:juser.fz-juelich.de:19791$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000019791 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000019791 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x1
000019791 9141_ $$y2011
000019791 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000019791 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000019791 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000019791 970__ $$aVDB:(DE-Juel1)134778
000019791 980__ $$aVDB
000019791 980__ $$aConvertedRecord
000019791 980__ $$ajournal
000019791 980__ $$aI:(DE-Juel1)JSC-20090406
000019791 980__ $$aUNRESTRICTED
000019791 9801_ $$aFullTexts