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We correct claims about lower bounds on mutual information (MI) between real-valued random variables

made by Kraskov et al., Phys. Rev. E 69, 066138 (2004). We show that non-trivial lower bounds on MI in terms

of linear correlations depend on the marginal (single variable) distributions. This is so in spite of the invariance

of MI under reparametrizations, because linear correlations are not invariant under them. The simplest bounds

are obtained for Gaussians, but the most interesting ones for practical purposes are obtained for uniform marginal

distributions. The latter can be enforced in general by using the ranks of the individual variables instead of their

actual values, in which case one obtains bounds on MI in terms of Spearman correlation coefficients. We show

with gene expression data that these bounds are in general nontrivial, and the degree of their (non)saturation

yields valuable insight.
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Mutual information [1] between two objects is the dif-

ference between the combined lengths of their individual

descriptions and the length of a joint description, all descrip-

tions being “optimal,” i.e. lossless and redundancy-free. In

the framework of algorithmic information theory [2], this is

taken literally, i.e. the “objects” are sequences of letters of

some alphabet, and “description” means a compression of the

sequence on some specified but otherwise arbitrary universal

Turing machine. In the framework of Shannon theory, in

contrast, we deal with random variables, and “description

length” is to be understood as the minimal average information

needed to specify their realizations, given the probability

distributions.

In the following we shall only use the Shannon framework,

but we shall not forget entirely about individual objects.

When confronted with them, we make some (explicit or

implicit) estimate about the probability distribution (assuming

that the observed objects are in some sense “typical”);

computing their MI is actually a problem of statistical

inference.

More precisely, consider two random variables X and Y

with realizations x and y and probability densities pX(x) and

pY (y). For simplicity we shall assume that x and y are both

scalars taken either from a finite interval or from the interval

[−∞,∞]. In both cases pX and py are normalized to 1. The

joint distribution is p(x,y). The MI is then defined as

I (X : Y ) =

∫

dxdyp(x,y) log
p(x,y)

pX(x)pY (y)
, (1)

where the base of the logarithm specifies the units in

which information is measured. Bits correspond to logarithm

base 2.

From this one sees that I is symmetrical, I (X : Y ) = I (Y :

X), and positive definite: I (X : Y ) = 0 if and only if X and Y

are strictly independent. Thus I (X : Y ) is a universal measure

of dependency, being nonzero whenever X and Y have any-

thing in common. This can also be seen in the following way:

the (differential) entropy H (X) = −
∫

dxpX(x) log pX(x) is

the (negative) average log-likelihood of x, and

I (X : Y ) = H (X) − H (X|Y ) (2)

is the logarithm of the ratio between the unconditioned

likelihood of x and the posterior likelihood conditioned on

the value y of Y .

For the differential entropy, there is a well-known upper

bound in terms of the variance: H (X) is maximal for a

Gaussian with the same variance as the data [1]. Indeed, this

is true also for multivariate distributions. In the Appendix

of [3], a formal proof based on Lagrangian multipliers was

given that analogous bounds hold also for the MI. According

to [3], a given covariance matrix implies a lower bound on the

MI. Unfortunately, this proof is wrong, and the claim made

in [3] is incorrect (see also the Erratum [4]). The error in [3]

was subtle: The unique solution of the Lagrangian variational

problem was given correctly, but the fact was missed that this

solution is in general a saddle point, the correct bound being

an infimum which is not reached by any actual distribution (at

least not by a distribution in the class admitted in the variational

problem).

Indeed, it is easily seen that the MI can be arbitrarily

small for any value of the correlation. Assume that the joint

distribution is a sum of a δ peak with weight 1 − ǫ centered

at (x,y) = (1,1) and a two-dimensional (2D) Gaussian with

weight ǫ centered at the origin,

p(x,y) = (1 − ǫ)δ(x − 1)δ(y − 1) +
ǫ

2πσ 2
e
−

x2+y2

2σ2 . (3)

Then the correlation between X and Y varies between zero

and one as the width σ shrinks to zero, for any fixed ǫ > 0.

But the MI is bounded for all σ by I (X : Y ) � −ǫ log ǫ −

(1 − ǫ) log(1 − ǫ), which tends to zero as ǫ → 0. Thus the MI

can be arbitrarily close to zero, even when the correlation is

arbitrarily close to 1—although this is unlikely to appear in

real applications, except for outliers.

It is the purpose of the present paper to present correct

bounds replacing those given in [3]. As we shall see, to obtain

nontrivial bounds for the MI, one needs both the covariance

matrix and the marginal distributions. But the latter can be
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chosen arbitrarily to a large extent, since I (X : Y ) as defined

in Eq. (1) is invariant under homeomorphism. Let φ(x) be

a continuous and monotonic function, such that its inverse

φ−1(x) is also continuous and monotonic, and let X′ be a

random variable with realization x ′ = φ(x) if X has realization

x. Then

pX(x) =

∣

∣

∣

∣

dφ(x)

dx

∣

∣

∣

∣

pX′(x ′), (4)

and I (X : Y ) = I (X′ : Y ). By symmetry, the same holds for

homeomorphisms of Y .

This leads to the following strategy for obtaining bounds

on I (X : Y ): One first transforms X and Y independently

so that they have a given distribution, e.g., a Gaussian or a

uniform distribution. Notice that the first and second moments

in general will change during such a transformation. After that

is done, one applies the bound suitable for the chosen marginal

distributions.

The case of Gaussian marginal distributions is the simplest

to treat theoretically. In that case the arguments given in the

Appendix of [3] apply, and the MI is bounded from below by

the MI of a joint Gaussian with the observed first and second

moments. But this is not the most practical choice, because

it is nontrivial to transform any empirical distribution into a

Gaussian.

For practical purposes much more suitable is transformation

to uniform distributions over finite intervals, say x ′ ∈ [−1,1]

and y ′ ∈ [−1,1]. This transformation, which also leads usually

to improved MI estimates, is de facto achieved by using for

x ′ and y ′ their normalized ranks. Assume that the empirical

data consist of N pairs (xi,yi), i = 1, . . . ,N . Then the rank ri

of xi is defined as the number of values xj which are less than

or equal to xi (here we assume that all xi are different, as is true

with probability 1 if X is drawn from a continuous distribution;

if there are degeneracies due, e.g., to discretization, we

remove them by adding small random fluctuations to xi).

Finally,

x ′
i = 2ri/N − 1. (5)

and analogously for y. Notice that this does not, strictly

speaking, define X′, as it defines the homeomorphism φ only

at the discrete values xi , but this does not pose a practical

problem. Furthermore, in the limit N → ∞ the “empirical

φ(x)” tends with probability 1 toward a true homeomorphism.

The linear correlation between the ranks of x and y is by

definition the Spearman coefficient S = CX′Y ′ [5].

To obtain a bound on the MI for given marginal distributions

and given first and second moments, we use the Lagrangian

method. Without loss of generality we assume that the data are

centered, i.e., 〈X〉 = 〈Y 〉 = 0. We use p(x,y) as independent

variables, and

pX(x) =

∫

dyp(x,y), pY (y) =

∫

dxp(x,y);

CXY =

∫∫

dxdyxyp(x,y)/[σXσY ] (6)

as constraints. The Lagrangian function is

L =

∫∫

dx dy p(x,y) log
p(x,y)

pX(x)pY (y)

+

∫

dxνX(x)

[

pX(x) −

∫

dy p(x,y)

]

+

∫

dyνY (y)

[

pY (y) −

∫

dx p(x,y)

]

+ λ

[

σXσY CXY −

∫∫

dx dy xyp(x,y)

]

, (7)

where νX(x), νY (y), and λ are Lagrangian parameters. The

variational equations are

δL

δp(x,y)
= log

p(x,y)

pX(x)pY (y)
+ 1 − νX(x) − νY (y) − λxy = 0,

(8)

which can also be written as

p(x,y) = fX(x)fY (y)e−λ(x−y)2

(9)

with unknown functions fX,fY and unknown λ, all of

which are determined by the constraints. The Kolmogorov

consistency condition for pX(x), in particular, gives

pX(x)

fX(x)
=

∫

dyfY (y)e−λ(x−y)2

. (10)

In the following we shall discuss only the two cases of

Gaussian and uniform marginals. For Gaussian marginals, one

finds that p(x,y) is also Gaussian, and thus the results of [3]

are obtained,

I (X : Y ) � I−
Gauss(CXY ) ≡ − 1

2
log

(

1 − C2
XY

)

. (11)

For uniform marginals, we indeed do not solve the problem of

finding a bound I−
unif on the MI for given S, but we solve the

easier implicit problem of finding both I−
unif and S for given λ.

We do this recursively, starting with the zeroth approximation

f
(0)
X (x) = f

(0)
Y (y) = 1/2. (12)

From the kth approximation of fX and fY we obtain the

(k + 1)st approximations by means of

1

f
(k+1)
X (x)

= 2

∫ 1

−1

dyf
(k)
Y (y)e−λ(x−y)2

, (13)

1

f
(k+1)
Y (y)

= 2

∫ 1

−1

dxf
(k)
X (x)e−λ(x−y)2

. (14)

When doing this, we observe that f
(k)
X and f

(k)
Y are even

functions for each k, and that both indeed are equal. We can

thus drop the subscripts and write the recursion as

f (k+1)(x) =

[

2

∫ 1

−1

dyf (k)(y)e−λ(x−y)2

]−1

. (15)

010101-2



RAPID COMMUNICATIONS

LOWER BOUNDS ON MUTUAL INFORMATION PHYSICAL REVIEW E 83, 010101(R) (2011)

TABLE I. Spearman coefficient and lower bound on the MI (in

natural units).

λ S I−
unif

0.00 0.0000 0.0000

0.25 0.0829 0.0034

0.50 0.1633 0.0135

0.75 0.2390 0.0292

1.00 0.3086 0.0495

1.25 0.3713 0.0729

1.50 0.4270 0.0984

2.00 0.5189 0.1517

2.50 0.5897 0.2040

3.00 0.6428 0.2531

4.00 0.7177 0.3396

5.00 0.7666 0.4123

6.00 0.8007 0.4746

7.00 0.8260 0.5292

8.00 0.8455 0.5777

9.00 0.8610 0.6215

10.00 0.8736 0.6614

11.50 0.8887 0.7156

13.00 0.9005 0.7636

15.00 0.9128 0.8208

17.00 0.9224 0.8717

20.00 0.9333 0.9389

23.00 0.9415 0.9975

27.00 0.9498 1.0657

32.00 0.9572 1.1393

40.00 0.9654 1.2366

50.00 0.9721 1.3357

After convergence, the joint density is obtained as

p(x,y) ∝ lim
k→∞

f (k)(x)f (k)(y)e−λ(x−y)2

. (16)

Here we have left the normalization open, in order to allow

for errors in the numerical integration which might have ac-

cumulated during the recursion. The proportionality constant

is thus fixed by the normalization condition
∫

p = 1. Finally,

S and the lower bound I−
unif(S) on I (X : Y ) are obtained by

using Eq. (1) and

S = 3

∫∫ 1

−1

dx dy xy p(x,y)e−λ(x−y)2

. (17)

Numerical results for several values of λ, obtained by

using Gaussian quadrature for the integrals, are given in

Table I. Except for values of S close to ±1, I−
unif(S) is well

approximated by

I−
unif(S) ≈ − 1

2
(1 − 0.122S2 + 0.053S12) log(1 − S2). (18)

The two bounds for Gaussians [Eq. (11)] and for uniform

distributions [Eq. (18)] are shown in Fig. 1.

As an application we show in Fig. 2 gene expression

data obtained from human B lymphocyte cells [6]. In that

experiment, the expressions of 12 600 different gene loci were

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

b
o

u
n

d
s
  

 I
-   

(n
a

tu
ra

l 
u

n
it
s
)

C  resp.  S

I
-
unif(S)   [Eq. (18)]

I
-
Gauss(C)   [Eq. (11)]

FIG. 1. (Color online) Lower bounds of MI in terms of the

Spearman correlation coefficient (continuous line, red) and in terms of

the Pearson correlation coefficient in the case of Gaussian marginals

(dashed, green). For both curves, the MI is measured in natural units.

measured in 336 different conditions, with special interest in

tumor cells. For each pair of genes the data can thus be rep-

resented as 336 points in a two-dimensional plane. Spearman

coefficients were obtained by ranking both coordinates (after

disambiguating degeneracies by adding low-level noise as

explained above). Mutual informations were estimated using

the k-nearest-neighbor method of [3] with k = 40. Although

this was done for all 12 600 × 12 599/2 pairs, only results

for the 12 599 pairs involving the important cancer gene

BCL6 are shown in Fig. 2. We can make the following

observations:

(a) The bound is respected by most pairs, and it forms

roughly a lower envelope for the distribution.

(b) There are several pairs for which the bound is violated,

mostly for small values of S. This reflects the fact that the

MI estimator is not perfect. Indeed, no MI estimator can

be perfect. Most estimators are chosen such that they never
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FIG. 2. (Color online) Mutual informations (in nats) between

gene BCL6 and all the other 12 599 genes as measured in the

microarray gene expression experiment of [6]. Values of the MI were

estimated by means of k nearest neighbors with k = 40. The green

line is the lower bound discussed in this paper.
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FIG. 3. (Color online) Each panel shows the gene expression

intensities (arbitrary units) of two genes, one of which is BCL6

(x axis). The other gene (y axis) was chosen such as to have very large

MI with BCL6, but very small Spearman coefficient (the uppermost

two points in Fig. 2 with |S| < 0.1). The color coding (green for BCL6

expression <200 and AL079277 expression <500, red otherwise) is

such that the same cell conditions have in both panels the same color.

It suggests that the observed nonlinear correlations are related to the

existence of two cell populations with very different properties. The

two genes correspond to accession numbers AA978353 (top) and

AL079277 (bottom).

produce negative MI, which is achieved by tolerating a positive

bias. The estimator of [3] was constructed such that the bias

is minimized, at the cost of obtaining occasionally negative

values due to statistical fluctuations.

(c) For most pairs the bound is not saturated, showing

that there are important nonlinear dependencies between these

pairs. As an illustration for the latter we take the two points

with |S| < 0.1 and I > 0.3 and plot their gene expression

vectors in Fig. 3. They show the coexpression of BCL6 with

the genes with GenBank accession numbers AA978353 (top)

and AL079277 (bottom). In both panels of Fig. 3 we see very

strong dependencies which cannot be approximated by linear

correlations. Neither of these two genes is known to be related

to BCL6, maybe because such relations were overlooked

because of the small linear correlations. The data suggest the

presence of (at least) two different subpopulations of cells,

marked in Fig. 3 by different colors. In the subpopulation in

which BCL6 is strongly expressed (red points in Fig. 3) there

are also significant linear correlations.

In summary, we have derived lower bounds on the MI

between real-valued variables in terms of linear correlation

coefficients. We have seen that such bounds are not indepen-

dent of the marginal distribution, in contrast to the claims made

in the Appendix of [3]. But one can use the homeomorphism

invariance of the MI to transform the variables to new variables

with uniform distribution, in which case the linear correlation

coefficient becomes equal to the Spearman coefficient S.

At least in one specific and scientifically relevant example,

the resulting bound of the MI in terms of S was found to

be numerically nontrivial. In particular, large discrepancies

between the bound and the actual values gave hints at specific

structures in the data which then could be investigated in more

detail. The bound can also be useful in testing MI estimators.

Usually, an estimator is deemed unacceptable if it violates the

bound I (X : Y ) � 0. But it will be equally unacceptable if it

violates the stronger bound I (X : Y ) � I−.

Finally, our results also answer the question of how linear

correlations change under reparametrizations. There is no

reason to expect a universal exact answer, but approximately

they should change such that the numerical values of the

bounds I− stay the same.

We thank Andrea Califano for providing us the data of

Ref. [6], and Alexander Kraskov and Maya Paczuski for

discussions.
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