000019835 001__ 19835
000019835 005__ 20240712100902.0
000019835 0247_ $$2DOI$$a10.1029/2000JD000113
000019835 0247_ $$2WOS$$aWOS:000178977400017
000019835 0247_ $$2ISSN$$a0141-8637
000019835 0247_ $$2Handle$$a2128/20911
000019835 037__ $$aPreJuSER-19835
000019835 041__ $$aeng
000019835 082__ $$a550
000019835 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000019835 1001_ $$0P:(DE-Juel1)VDB8771$$aMcKenna, D. S.$$b0$$uFZJ
000019835 245__ $$aA new Chemical Lagrangian Model of the Stratosphere (CLaMS) 2 : formulation of chemistry-scheme and initialisation
000019835 260__ $$aWashington, DC$$bUnion$$c2002
000019835 300__ $$aD15
000019835 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000019835 3367_ $$2DataCite$$aOutput Types/Journal article
000019835 3367_ $$00$$2EndNote$$aJournal Article
000019835 3367_ $$2BibTeX$$aARTICLE
000019835 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000019835 3367_ $$2DRIVER$$aarticle
000019835 440_0 $$06393$$aJournal of Geophysical Research D: Atmospheres$$v107$$x0148-0227
000019835 500__ $$aRecord converted from VDB: 12.11.2012
000019835 520__ $$a[1] The first simulations of stratospheric chemistry using the Chemical Lagrangian Model of the Stratosphere (CLaMS) are reported. A comprehensive chemical assimulation procedure is described that combines satellite, airborne, and balloon-borne tracer observations with results from a two-dimensional photochemical model simulation. This procedure uses tracer-tracer and tracer-potential vorticity mapping techniques. It correctly reproduces all basic features of the observed tracer distribution. This methodology is used to generate the initial composition fields that will be used for subsequent chemical simulations. Results from a 6-day simulation starting on 20 February 1997 show that the simulated HNO3 distribution displays the correct morphology, although the extremes of the observed HNO3 distribution are underestimated. The simulated ClO distribution exhibits a similar morphology to the observed Microwave Limb Sounder ClO distribution. Because of unseasonally low temperatures in the arctic lower stratosphere during spring 1997, high levels of chlorine activation are maintained in the simulation, resulting in up to 1.8 ppmv of chemical ozone loss over a 5-week period. Furthermore, simulations show strong spatially inhomogeneous chemical ozone depletion within the polar vortex and show that greatest ozone loss is confined to the vortex core. These results are confirmed by several Halogen Occultation Experiment and ozone sonde profiles, although the minimum ozone concentrations are overestimated. These studies demonstrate that CLaMS is capable of simulating vortex isolation, an essential feature of the polar vortex.
000019835 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000019835 588__ $$aDataset connected to Web of Science
000019835 650_7 $$2WoSType$$aJ
000019835 65320 $$2Author$$aatmosphere
000019835 65320 $$2Author$$astratosphere
000019835 65320 $$2Author$$aCLaMS
000019835 65320 $$2Author$$aLagrangian
000019835 65320 $$2Author$$atracers
000019835 7001_ $$0P:(DE-Juel1)129122$$aGrooß, J.-U.$$b1$$uFZJ
000019835 7001_ $$0P:(DE-Juel1)129123$$aGünther, G.$$b2$$uFZJ
000019835 7001_ $$0P:(DE-Juel1)129130$$aKonopka, Paul$$b3$$uFZJ
000019835 7001_ $$0P:(DE-Juel1)129138$$aMüller, R.$$b4$$uFZJ
000019835 7001_ $$0P:(DE-HGF)0$$aCarver, G.$$b5
000019835 773__ $$0PERI:(DE-600)2016800-7 $$a10.1029/2000JD000113$$gVol. 107, p. D15$$pD15$$q107<D15$$tJournal of geophysical research / Atmospheres  $$tJournal of Geophysical Research$$v107$$x0148-0227$$y2002
000019835 8567_ $$uhttp://dx.doi.org/10.1029/2000JD000113
000019835 8564_ $$uhttps://juser.fz-juelich.de/record/19835/files/jgrd8661.pdf$$yOpenAccess
000019835 8564_ $$uhttps://juser.fz-juelich.de/record/19835/files/jgrd8661.gif?subformat=icon$$xicon$$yOpenAccess
000019835 8564_ $$uhttps://juser.fz-juelich.de/record/19835/files/jgrd8661.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000019835 8564_ $$uhttps://juser.fz-juelich.de/record/19835/files/jgrd8661.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000019835 8564_ $$uhttps://juser.fz-juelich.de/record/19835/files/jgrd8661.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000019835 909CO $$ooai:juser.fz-juelich.de:19835$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000019835 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000019835 9141_ $$y2002
000019835 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000019835 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000019835 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000019835 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000019835 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000019835 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review
000019835 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000019835 9201_ $$0I:(DE-Juel1)VDB47$$d31.12.2006$$gICG$$kICG-I$$lStratosphäre$$x0
000019835 970__ $$aVDB:(DE-Juel1)13485
000019835 9801_ $$aFullTexts
000019835 980__ $$aVDB
000019835 980__ $$aConvertedRecord
000019835 980__ $$ajournal
000019835 980__ $$aI:(DE-Juel1)IEK-7-20101013
000019835 980__ $$aUNRESTRICTED
000019835 981__ $$aI:(DE-Juel1)ICE-4-20101013
000019835 981__ $$aI:(DE-Juel1)IEK-7-20101013