001     19835
005     20240712100902.0
024 7 _ |a 10.1029/2000JD000113
|2 DOI
024 7 _ |a WOS:000178977400017
|2 WOS
024 7 _ |a 0141-8637
|2 ISSN
024 7 _ |a 2128/20911
|2 Handle
037 _ _ |a PreJuSER-19835
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Meteorology & Atmospheric Sciences
100 1 _ |a McKenna, D. S.
|0 P:(DE-Juel1)VDB8771
|b 0
|u FZJ
245 _ _ |a A new Chemical Lagrangian Model of the Stratosphere (CLaMS) 2 : formulation of chemistry-scheme and initialisation
260 _ _ |c 2002
|a Washington, DC
|b Union
300 _ _ |a D15
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Geophysical Research D: Atmospheres
|x 0148-0227
|0 6393
|v 107
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a [1] The first simulations of stratospheric chemistry using the Chemical Lagrangian Model of the Stratosphere (CLaMS) are reported. A comprehensive chemical assimulation procedure is described that combines satellite, airborne, and balloon-borne tracer observations with results from a two-dimensional photochemical model simulation. This procedure uses tracer-tracer and tracer-potential vorticity mapping techniques. It correctly reproduces all basic features of the observed tracer distribution. This methodology is used to generate the initial composition fields that will be used for subsequent chemical simulations. Results from a 6-day simulation starting on 20 February 1997 show that the simulated HNO3 distribution displays the correct morphology, although the extremes of the observed HNO3 distribution are underestimated. The simulated ClO distribution exhibits a similar morphology to the observed Microwave Limb Sounder ClO distribution. Because of unseasonally low temperatures in the arctic lower stratosphere during spring 1997, high levels of chlorine activation are maintained in the simulation, resulting in up to 1.8 ppmv of chemical ozone loss over a 5-week period. Furthermore, simulations show strong spatially inhomogeneous chemical ozone depletion within the polar vortex and show that greatest ozone loss is confined to the vortex core. These results are confirmed by several Halogen Occultation Experiment and ozone sonde profiles, although the minimum ozone concentrations are overestimated. These studies demonstrate that CLaMS is capable of simulating vortex isolation, an essential feature of the polar vortex.
536 _ _ |a Chemie und Dynamik der Geo-Biosphäre
|c U01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK257
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a atmosphere
653 2 0 |2 Author
|a stratosphere
653 2 0 |2 Author
|a CLaMS
653 2 0 |2 Author
|a Lagrangian
653 2 0 |2 Author
|a tracers
700 1 _ |a Grooß, J.-U.
|0 P:(DE-Juel1)129122
|b 1
|u FZJ
700 1 _ |a Günther, G.
|0 P:(DE-Juel1)129123
|b 2
|u FZJ
700 1 _ |a Konopka, Paul
|0 P:(DE-Juel1)129130
|b 3
|u FZJ
700 1 _ |a Müller, R.
|0 P:(DE-Juel1)129138
|b 4
|u FZJ
700 1 _ |a Carver, G.
|0 P:(DE-HGF)0
|b 5
773 _ _ |0 PERI:(DE-600)2016800-7
|a 10.1029/2000JD000113
|g Vol. 107, p. D15
|p D15
|q 107|t Journal of Geophysical Research
|v 107
|x 0148-0227
|y 2002
|t Journal of geophysical research / Atmospheres
856 7 _ |u http://dx.doi.org/10.1029/2000JD000113
856 4 _ |u https://juser.fz-juelich.de/record/19835/files/jgrd8661.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/19835/files/jgrd8661.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/19835/files/jgrd8661.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/19835/files/jgrd8661.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/19835/files/jgrd8661.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:19835
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |k U01
|v Chemie und Dynamik der Geo-Biosphäre
|l Chemie und Dynamik der Geo-Biosphäre
|b Environment (Umwelt)
|0 G:(DE-Juel1)FUEK257
|x 0
914 1 _ |y 2002
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a Peer review
|0 StatID:(DE-HGF)0030
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |k ICG-I
|l Stratosphäre
|d 31.12.2006
|g ICG
|0 I:(DE-Juel1)VDB47
|x 0
970 _ _ |a VDB:(DE-Juel1)13485
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-4-20101013
981 _ _ |a I:(DE-Juel1)IEK-7-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21