000019846 001__ 19846
000019846 005__ 20240712100903.0
000019846 0247_ $$2DOI$$a10.1029/2001JD000699
000019846 0247_ $$2WOS$$aWOS:000180490000005
000019846 0247_ $$2ISSN$$a0141-8637
000019846 0247_ $$2Handle$$a2128/20910
000019846 037__ $$aPreJuSER-19846
000019846 041__ $$aeng
000019846 082__ $$a550
000019846 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000019846 1001_ $$0P:(DE-Juel1)VDB12001$$aPreusse, P.$$b0$$uFZJ
000019846 245__ $$aSpace based measurements of stratospheric mountain waves by CRISTA 1 : sensitivity, method, and case study
000019846 260__ $$aWashington, DC$$bUnion$$c2002
000019846 300__ $$aD23
000019846 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000019846 3367_ $$2DataCite$$aOutput Types/Journal article
000019846 3367_ $$00$$2EndNote$$aJournal Article
000019846 3367_ $$2BibTeX$$aARTICLE
000019846 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000019846 3367_ $$2DRIVER$$aarticle
000019846 440_0 $$06393$$aJournal of Geophysical Research D: Atmospheres$$v107$$x0148-0227
000019846 500__ $$aRecord converted from VDB: 12.11.2012
000019846 520__ $$a[1] The Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) instrument measured stratospheric temperatures and trace species concentrations with high precision and spatial resolution during two missions. The measuring technique is infrared limb-sounding of optically thin emissions. In a general approach, we investigate the applicability of the technique to measure gravity waves (GWs) in the retrieved temperature data. It is shown that GWs with wavelengths of the order of 100-200 km horizontally can be detected. The results are applicable to any instrument using the same technique. We discuss additional constraints inherent to the CRISTA instrument. The vertical field of view and the influence of the sampling and retrieval imply that waves with vertical wavelengths similar to3-5 km or larger can be retrieved. Global distributions of GW fluctuations were extracted from temperature data measured by CRISTA using Maximum Entropy Method (MEM) and Harmonic Analysis (HA), yielding height profiles of vertical wavelength and peak amplitude for fluctuations in each scanned profile. The method is discussed and compared to Fourier transform analyses and standard deviations. Analysis of data from the first mission reveals large GW amplitudes in the stratosphere over southernmost South America. These waves obey the dispersion relation for linear two-dimensional mountain waves (MWs). The horizontal structure on 6 November 1994 is compared to temperature fields calculated by the Pennsylvania State University (PSU)/ National Center for Atmospheric Research (NCAR) mesoscale model (MM5). It is demonstrated that precise knowledge of the instrument's sensitivity is essential. Particularly good agreement is found at the southern tip of South America where the MM5 accurately reproduces the amplitudes and phases of a large-scale wave with 400 km horizontal wavelength. Targeted ray-tracing simulations allow us to interpret some of the observed wave features. A companion paper will discuss MWs on a global scale and estimates the fraction that MWs contribute to the total GWenergy (Preusse et al., in preparation, 2002).
000019846 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000019846 588__ $$aDataset connected to Web of Science
000019846 650_7 $$2WoSType$$aJ
000019846 7001_ $$0P:(DE-HGF)0$$aDörnbrack, A.$$b1
000019846 7001_ $$0P:(DE-HGF)0$$aEckermann, S. D.$$b2
000019846 7001_ $$0P:(DE-HGF)0$$aTan, K. A.$$b3
000019846 7001_ $$0P:(DE-Juel1)129145$$aRiese, M.$$b4$$uFZJ
000019846 7001_ $$0P:(DE-HGF)0$$aSchäler, B.$$b5
000019846 7001_ $$0P:(DE-HGF)0$$aBroutmann, D.$$b6
000019846 7001_ $$0P:(DE-HGF)0$$aBackmeister, J.$$b7
000019846 7001_ $$0P:(DE-HGF)0$$aOffermann, D.$$b8
000019846 773__ $$0PERI:(DE-600)2016800-7 $$a10.1029/2001JD000699$$gVol. 107, p. D23$$pD23$$q107<D23$$tJournal of geophysical research / Atmospheres $$tJournal of Geophysical Research$$v107$$x0148-0227$$y2002
000019846 8567_ $$uhttp://dx.doi.org/10.1029/2001JD000699
000019846 8564_ $$uhttps://juser.fz-juelich.de/record/19846/files/2001JD000699.pdf$$yOpenAccess
000019846 8564_ $$uhttps://juser.fz-juelich.de/record/19846/files/2001JD000699.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000019846 909CO $$ooai:juser.fz-juelich.de:19846$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000019846 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000019846 9141_ $$y2002
000019846 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000019846 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000019846 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000019846 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000019846 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000019846 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review
000019846 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000019846 9201_ $$0I:(DE-Juel1)VDB47$$d31.12.2006$$gICG$$kICG-I$$lStratosphäre$$x0
000019846 970__ $$aVDB:(DE-Juel1)13486
000019846 9801_ $$aFullTexts
000019846 980__ $$aVDB
000019846 980__ $$aConvertedRecord
000019846 980__ $$ajournal
000019846 980__ $$aI:(DE-Juel1)IEK-7-20101013
000019846 980__ $$aUNRESTRICTED
000019846 981__ $$aI:(DE-Juel1)ICE-4-20101013
000019846 981__ $$aI:(DE-Juel1)IEK-7-20101013