000019932 001__ 19932
000019932 005__ 20240708133707.0
000019932 0247_ $$2DOI$$a10.1016/j.solmat.2011.09.051
000019932 0247_ $$2WOS$$aWOS:000298534000025
000019932 0247_ $$2altmetric$$aaltmetric:21807648
000019932 037__ $$aPreJuSER-19932
000019932 041__ $$aeng
000019932 082__ $$a530
000019932 084__ $$2WoS$$aEnergy & Fuels
000019932 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000019932 1001_ $$0P:(DE-HGF)0$$aGatz, S.$$b0
000019932 245__ $$aFiring stability of SiN(y)/SiN(x) stacks for the surface passivation of crystalline silicon solar cells
000019932 260__ $$aAmsterdam$$bNorth Holland$$c2012
000019932 300__ $$a180 - 185
000019932 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000019932 3367_ $$2DataCite$$aOutput Types/Journal article
000019932 3367_ $$00$$2EndNote$$aJournal Article
000019932 3367_ $$2BibTeX$$aARTICLE
000019932 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000019932 3367_ $$2DRIVER$$aarticle
000019932 440_0 $$05561$$aSolar Energy Materials and Solar Cells$$v96$$x0927-0248$$y1
000019932 500__ $$aThe authors thank M. Perutz, S. Braunig, S. Spatlich and S. Wyczanowski for the sample preparation. This work was supported by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety under Contract No. 0327529A, which is gratefully acknowledged.
000019932 520__ $$aIn the photovoltaic industry contacts to crystalline silicon are typically formed by firing of screen-printed metallization pastes. However, the stability of surface passivation layers during high temperature contact formation is a major challenge. Here, we investigate the thermal stability of the surface passivation by amorphous silicon nitride double layers (SiNy/SiNx). The SiNy passivation layer is silicon rich with refractive index larger than 3. Whereas the SiNx capping layer has a refractive index of 2.05. Compared to pure hydrogenated amorphous silicon, the nitrogen in the SiNy passivation layer improves the firing stability. We achieve an effective surface recombination velocity after a conventional co-firing process of (5.2 +/- 2) cm/s on p-type (1.5 Omega cm) FZ-silicon wafers at an injection density of 10(15) cm(-3). An analysis of the improved firing stability is presented based on FTIR and hydrogen effusion measurements. The incorporation of an SiNy/SiNx stack into the passivated rear of Cz silicon screen-printed solar cells results in an energy conversion efficiency of 18.3% compared to reference solar cells with conventional aluminum back surface field showing 17.9% efficiency. The short circuit current density increases by up to 0.8 mA/cm(2) compared to conventional solar cells due to the improved optical reflectance and rear side surface passivation. (C) 2011 Elsevier By. All rights reserved.
000019932 536__ $$0G:(DE-Juel1)FUEK401$$2G:(DE-HGF)$$aErneuerbare Energien$$cP11$$x0
000019932 588__ $$aDataset connected to Web of Science
000019932 65320 $$2Author$$aSurface passivation
000019932 65320 $$2Author$$aPERC solar cell
000019932 65320 $$2Author$$aSilicon nitride
000019932 65320 $$2Author$$aScreen-printing
000019932 650_7 $$2WoSType$$aJ
000019932 7001_ $$0P:(DE-HGF)0$$aDullweber, T.$$b1
000019932 7001_ $$0P:(DE-HGF)0$$aMertens, V.$$b2
000019932 7001_ $$0P:(DE-Juel1)VDB71986$$aEinsele, F.$$b3$$uFZJ
000019932 7001_ $$0P:(DE-HGF)0$$aBrendel, R.$$b4
000019932 773__ $$0PERI:(DE-600)2012677-3$$a10.1016/j.solmat.2011.09.051$$gVol. 96, p. 180 - 185$$p180 - 185$$q96<180 - 185$$tSolar energy materials & solar cells$$v96$$x0927-0248$$y2012
000019932 8567_ $$uhttp://dx.doi.org/10.1016/j.solmat.2011.09.051
000019932 909CO $$ooai:juser.fz-juelich.de:19932$$pVDB
000019932 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000019932 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000019932 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000019932 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000019932 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000019932 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000019932 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000019932 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000019932 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000019932 9141_ $$y2012
000019932 9131_ $$0G:(DE-Juel1)FUEK401$$1G:(DE-HGF)POF2-110$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$kP11$$lErneuerbare Energien$$vErneuerbare Energien$$x0
000019932 9132_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000019932 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$gIEK$$kIEK-5$$lPhotovoltaik$$x0
000019932 970__ $$aVDB:(DE-Juel1)134962
000019932 980__ $$aVDB
000019932 980__ $$aConvertedRecord
000019932 980__ $$ajournal
000019932 980__ $$aI:(DE-Juel1)IEK-5-20101013
000019932 980__ $$aUNRESTRICTED
000019932 981__ $$aI:(DE-Juel1)IMD-3-20101013