001     19932
005     20240708133707.0
024 7 _ |2 DOI
|a 10.1016/j.solmat.2011.09.051
024 7 _ |2 WOS
|a WOS:000298534000025
024 7 _ |a altmetric:21807648
|2 altmetric
037 _ _ |a PreJuSER-19932
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Energy & Fuels
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
100 1 _ |0 P:(DE-HGF)0
|a Gatz, S.
|b 0
245 _ _ |a Firing stability of SiN(y)/SiN(x) stacks for the surface passivation of crystalline silicon solar cells
260 _ _ |a Amsterdam
|b North Holland
|c 2012
300 _ _ |a 180 - 185
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 5561
|a Solar Energy Materials and Solar Cells
|v 96
|x 0927-0248
|y 1
500 _ _ |a The authors thank M. Perutz, S. Braunig, S. Spatlich and S. Wyczanowski for the sample preparation. This work was supported by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety under Contract No. 0327529A, which is gratefully acknowledged.
520 _ _ |a In the photovoltaic industry contacts to crystalline silicon are typically formed by firing of screen-printed metallization pastes. However, the stability of surface passivation layers during high temperature contact formation is a major challenge. Here, we investigate the thermal stability of the surface passivation by amorphous silicon nitride double layers (SiNy/SiNx). The SiNy passivation layer is silicon rich with refractive index larger than 3. Whereas the SiNx capping layer has a refractive index of 2.05. Compared to pure hydrogenated amorphous silicon, the nitrogen in the SiNy passivation layer improves the firing stability. We achieve an effective surface recombination velocity after a conventional co-firing process of (5.2 +/- 2) cm/s on p-type (1.5 Omega cm) FZ-silicon wafers at an injection density of 10(15) cm(-3). An analysis of the improved firing stability is presented based on FTIR and hydrogen effusion measurements. The incorporation of an SiNy/SiNx stack into the passivated rear of Cz silicon screen-printed solar cells results in an energy conversion efficiency of 18.3% compared to reference solar cells with conventional aluminum back surface field showing 17.9% efficiency. The short circuit current density increases by up to 0.8 mA/cm(2) compared to conventional solar cells due to the improved optical reflectance and rear side surface passivation. (C) 2011 Elsevier By. All rights reserved.
536 _ _ |0 G:(DE-Juel1)FUEK401
|2 G:(DE-HGF)
|a Erneuerbare Energien
|c P11
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a Surface passivation
653 2 0 |2 Author
|a PERC solar cell
653 2 0 |2 Author
|a Silicon nitride
653 2 0 |2 Author
|a Screen-printing
700 1 _ |0 P:(DE-HGF)0
|a Dullweber, T.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Mertens, V.
|b 2
700 1 _ |0 P:(DE-Juel1)VDB71986
|a Einsele, F.
|b 3
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Brendel, R.
|b 4
773 _ _ |0 PERI:(DE-600)2012677-3
|a 10.1016/j.solmat.2011.09.051
|g Vol. 96, p. 180 - 185
|p 180 - 185
|q 96<180 - 185
|t Solar energy materials & solar cells
|v 96
|x 0927-0248
|y 2012
856 7 _ |u http://dx.doi.org/10.1016/j.solmat.2011.09.051
909 C O |o oai:juser.fz-juelich.de:19932
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK401
|1 G:(DE-HGF)POF2-110
|2 G:(DE-HGF)POF2-100
|a DE-HGF
|b Energie
|k P11
|l Erneuerbare Energien
|v Erneuerbare Energien
|x 0
913 2 _ |0 G:(DE-HGF)POF3-121
|1 G:(DE-HGF)POF3-120
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|b Forschungsbereich Energie
|l Erneuerbare Energien
|v Solar cells of the next generation
|x 0
914 1 _ |y 2012
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|g IEK
|k IEK-5
|l Photovoltaik
|x 0
970 _ _ |a VDB:(DE-Juel1)134962
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21