000019933 001__ 19933
000019933 005__ 20240708133707.0
000019933 0247_ $$2DOI$$a10.1088/0022-3727/45/1/015101
000019933 0247_ $$2WOS$$aWOS:000298290000006
000019933 037__ $$aPreJuSER-19933
000019933 041__ $$aeng
000019933 082__ $$a530
000019933 084__ $$2WoS$$aPhysics, Applied
000019933 1001_ $$0P:(DE-Juel1)VDB104452$$aFlikweert, A.J.$$b0$$uFZJ
000019933 245__ $$aMicrocrystalline thin-film solar cell deposition on moving substrates using a linear VHF-PECVD reactor and a cross-flow geometry
000019933 260__ $$aBristol$$bIOP Publ.$$c2012
000019933 300__ $$a015101
000019933 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000019933 3367_ $$2DataCite$$aOutput Types/Journal article
000019933 3367_ $$00$$2EndNote$$aJournal Article
000019933 3367_ $$2BibTeX$$aARTICLE
000019933 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000019933 3367_ $$2DRIVER$$aarticle
000019933 440_0 $$03700$$aJournal of Physics D - Applied Physics$$v45$$x0022-3727$$y1
000019933 500__ $$aWe acknowledge the Bundesministerium fur Umwelt, Naturschutz und Reaktorsicherheit for the financial support, project number 0325024A and investment project 0327625. The authors want to thank J Wordenweber, M Hulsbeck, W Reetz, S Michard, W Beyer and U Rau, as well as Von Ardenne Anlagentechnik, Forschungs- und Applikationslabor Plasmatechnik, and Dresden University of Technology for their support.
000019933 520__ $$aA concept for high-rate plasma deposition (PECVD) of hydrogenated microcrystalline silicon on moving substrates (dynamic deposition) is developed and evaluated. The chamber allows for substrates up to a size of 40 x 40 cm(2). The deposition plasma is sustained between linear VHF electrodes (60 MHz) and a moving substrate. Due to the gas flow geometry and the high degree of source gas depletion, from the carrier's point of view the silane concentration varies when passing the electrodes. This is known to lead to different growth conditions which can induce transitions from microcrystalline to amorphous growth. The effect of different silane concentrations is simulated at a standard RF showerhead electrode by intentionally varying the silane concentration during deposition in static mode. This variation may decrease the layer quality of microcrystalline silicon, due to a shift of the crystallinity away from the optimum. However, adapting the input silane concentration, state-of-the-art solar cells are obtained. Microcrystalline cells (ZnO : Al/Ag back contacts) produced by the linear VHF plasma sources show an efficiency of 7.9% and 6.6% for depositions in static and dynamic mode, respectively.
000019933 536__ $$0G:(DE-Juel1)FUEK401$$2G:(DE-HGF)$$aErneuerbare Energien$$cP11$$x0
000019933 588__ $$aDataset connected to Web of Science
000019933 650_7 $$2WoSType$$aJ
000019933 7001_ $$0P:(DE-Juel1)VDB71601$$aZimmermann, T.$$b1$$uFZJ
000019933 7001_ $$0P:(DE-Juel1)VDB14656$$aMerdzhanova, T.$$b2$$uFZJ
000019933 7001_ $$0P:(DE-Juel1)VDB91590$$aWeigand, D.$$b3$$uFZJ
000019933 7001_ $$0P:(DE-Juel1)VDB5983$$aAppenzeller, W.$$b4$$uFZJ
000019933 7001_ $$0P:(DE-Juel1)VDB65605$$aGordijn, A.$$b5$$uFZJ
000019933 773__ $$0PERI:(DE-600)1472948-9$$a10.1088/0022-3727/45/1/015101$$gVol. 45, p. 015101$$p015101$$q45<015101$$tJournal of physics / D$$v45$$x0022-3727$$y2012
000019933 8567_ $$uhttp://dx.doi.org/10.1088/0022-3727/45/1/015101
000019933 909CO $$ooai:juser.fz-juelich.de:19933$$pVDB
000019933 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000019933 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000019933 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000019933 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000019933 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000019933 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000019933 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000019933 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000019933 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000019933 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000019933 9141_ $$y2012
000019933 9131_ $$0G:(DE-Juel1)FUEK401$$1G:(DE-HGF)POF2-110$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$kP11$$lErneuerbare Energien$$vErneuerbare Energien$$x0
000019933 9132_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000019933 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$gIEK$$kIEK-5$$lPhotovoltaik$$x0
000019933 970__ $$aVDB:(DE-Juel1)134963
000019933 980__ $$aVDB
000019933 980__ $$aConvertedRecord
000019933 980__ $$ajournal
000019933 980__ $$aI:(DE-Juel1)IEK-5-20101013
000019933 980__ $$aUNRESTRICTED
000019933 981__ $$aI:(DE-Juel1)IMD-3-20101013