000019952 001__ 19952
000019952 005__ 20230426083032.0
000019952 0247_ $$2DOI$$a10.1103/PhysRevB.84.224308
000019952 0247_ $$2WOS$$aWOS:000298556700005
000019952 0247_ $$2Handle$$a2128/10876
000019952 037__ $$aPreJuSER-19952
000019952 041__ $$aeng
000019952 082__ $$a530
000019952 084__ $$2WoS$$aPhysics, Condensed Matter
000019952 1001_ $$0P:(DE-Juel1)130713$$aHirschfeld, J.A.$$b0$$uFZJ
000019952 245__ $$aFirst-principles study and modeling of strain-dependent ionic migration in ZrO(2)
000019952 260__ $$aCollege Park, Md.$$bAPS$$c2011
000019952 300__ $$a224308
000019952 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000019952 3367_ $$2DataCite$$aOutput Types/Journal article
000019952 3367_ $$00$$2EndNote$$aJournal Article
000019952 3367_ $$2BibTeX$$aARTICLE
000019952 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000019952 3367_ $$2DRIVER$$aarticle
000019952 440_0 $$04919$$aPhysical Review B$$v84$$x1098-0121$$y22
000019952 500__ $$3POF3_Assignment on 2016-02-29
000019952 500__ $$aRecord converted from VDB: 12.11.2012
000019952 520__ $$aElectrolytes with high ionic conductivity at lower temperatures are the prerequisite for the success of Solid Oxide Fuel Cells (SOFC). One promising candidate is doped zirconia. In the past its ionic conductivity has mainly been increased by decreasing its thickness. However, the influence of the thickness is only linear, whereas the impact of migration barriers is exponential. Therefore understanding the oxygen transport in doped zirconia is of fundamental importance. In this work we pursue the approach of the strain dependent ionic migration in zirconia. We investigate how the migration barriers for oxygen ions respond to a change of the atomic strain. We employ the method of Density Functional Theory (DFT) calculations to relax the atomic configurations to the ground state. In connection with the Nudged Elastic Band (NEB) method we obtain the migration barrier of the oxygen ion jumps in zirconia for a given lattice constant. Similar to other publications we observe a decrease in the migration barrier for expansive strain, but in addition we also find a migration barrier decrease for high compressive strains beyond a maximal height of the migration barrier at an intermediate compressive strain. We present a simple analytic model which, by using interactions of the Lennard-Jones type, gives an explanation for this behavior.
000019952 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000019952 542__ $$2Crossref$$i2011-12-27$$uhttp://link.aps.org/licenses/aps-default-license
000019952 588__ $$aDataset connected to Web of Science
000019952 650_7 $$2WoSType$$aJ
000019952 7001_ $$0P:(DE-Juel1)130810$$aLustfeld, H.$$b1$$uFZJ
000019952 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.84.224308$$bAmerican Physical Society (APS)$$d2011-12-27$$n22$$p224308$$tPhysical Review B$$v84$$x1098-0121$$y2011
000019952 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.84.224308$$gVol. 84, p. 224308$$n22$$p224308$$q84<224308$$tPhysical review / B$$v84$$x1098-0121$$y2011
000019952 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevB.84.224308
000019952 8564_ $$uhttps://juser.fz-juelich.de/record/19952/files/PhysRevB.84.224308.pdf$$yOpenAccess
000019952 8564_ $$uhttps://juser.fz-juelich.de/record/19952/files/PhysRevB.84.224308.gif?subformat=icon$$xicon$$yOpenAccess
000019952 8564_ $$uhttps://juser.fz-juelich.de/record/19952/files/PhysRevB.84.224308.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000019952 8564_ $$uhttps://juser.fz-juelich.de/record/19952/files/PhysRevB.84.224308.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000019952 8564_ $$uhttps://juser.fz-juelich.de/record/19952/files/PhysRevB.84.224308.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000019952 909CO $$ooai:juser.fz-juelich.de:19952$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000019952 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000019952 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000019952 9141_ $$y2011
000019952 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000019952 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000019952 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000019952 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$gPGI$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000019952 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$gIAS$$kIAS-1$$lQuanten-Theorie der Materialien$$x1$$zIFF-1
000019952 970__ $$aVDB:(DE-Juel1)134986
000019952 980__ $$aVDB
000019952 980__ $$aConvertedRecord
000019952 980__ $$ajournal
000019952 980__ $$aI:(DE-Juel1)PGI-1-20110106
000019952 980__ $$aI:(DE-Juel1)IAS-1-20090406
000019952 980__ $$aUNRESTRICTED
000019952 9801_ $$aFullTexts
000019952 981__ $$aI:(DE-Juel1)IAS-1-20090406
000019952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ceramint.2008.02.020
000019952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.122186
000019952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/b801675e
000019952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/b900148d
000019952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jeurceramsoc.2009.01.014
000019952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/c000259c
000019952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adfm.201000071
000019952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JJAP.50.055803
000019952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ssi.2005.02.021
000019952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.104.115901
000019952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/c0cp01018a
000019952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1468-6996/11/5/054503
000019952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0022-3697(57)90059-8
000019952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1151-2916.1985.tb15247.x
000019952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/APEX.2.061402
000019952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.59.797
000019952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0927-0256(03)00104-6
000019952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2841941
000019952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1323224
000019952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.49.11560
000019952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2135889
000019952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1151-2916.2004.tb06325.x
000019952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s11431-008-0119-4
000019952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.882374