001     19964
005     20180208202419.0
024 7 _ |2 pmid
|a pmid:21155993
024 7 _ |2 DOI
|a 10.1111/j.1365-2818.2010.03472.x
024 7 _ |2 WOS
|a WOS:000289163900012
037 _ _ |a PreJuSER-19964
041 _ _ |a eng
084 _ _ |2 WoS
|a Microscopy
100 1 _ |0 P:(DE-HGF)0
|a Nepijko, S.A.
|b 0
245 _ _ |a Quantitative measurements of magnetic stray field dynamics of Permalloy particles in a photoemission electron microscopy
260 _ _ |c 2011
300 _ _ |a 216 -220
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 25425
|a Journal of Microscopy
|v 242
|y 2
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a By example of a Permalloy particle (40 × 40 μm(2) size, 30 nm thickness) we demonstrate a procedure to quantitatively investigate the dynamics of magnetic stray fields during ultrafast magnetization reversal. The measurements have been performed in a time-resolving photoemission electron microscope using the X-ray magnetic circular dichroism. In the particle under investigation, we have observed a flux-closure-dominated magnetic ground structure, minimizing the magnetic stray field outside the sample. A fast magnetic field pulse introduced changes in the micromagnetic structure accompanied with an incomplete flux closure. As a result, stray fields arise along the edges of domains, which cause a change of contrast and an image deformation of the particles geometry (curvature of its edge). The magnetic stray fields are calculated from a deformation of the X-ray magnetic circular dichroism (XMCD) images taken after the magnetic field pulse in a 1 ns interval. These measurements reveal a decrease of magnetic stray fields with time. An estimate of the lower limit of the domain wall velocity yields about 2 × 10(3) m s(-1).
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a Magnetic stray fields
653 2 0 |2 Author
|a magnetization reversal
653 2 0 |2 Author
|a Permalloy particle
653 2 0 |2 Author
|a photoemission electron microscope
700 1 _ |0 P:(DE-HGF)0
|a Krasyuk, A.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Oelsner, A.
|b 2
700 1 _ |0 P:(DE-Juel1)130948
|a Schneider, C.M.
|b 3
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Schonhense, G.
|b 4
773 _ _ |0 PERI:(DE-600)2007259-4
|a 10.1111/j.1365-2818.2010.03472.x
|g Vol. 242, p. 216 -220
|p 216 -220
|q 242<216 -220
|t Journal of Microscopy
|v 242
|y 2011
909 C O |o oai:juser.fz-juelich.de:19964
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK412
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 2 _ |0 G:(DE-HGF)POF3-529H
|1 G:(DE-HGF)POF3-520
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Addenda
|x 0
914 1 _ |y 2011
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|g PGI
|k PGI-6
|l Elektronische Eigenschaften
|x 0
970 _ _ |a VDB:(DE-Juel1)135017
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21