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Shear and dielectric spectra in highly viscous liquids
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The recently proposed asymmetry model for the highly viscous flow suggests the equality of the dielectric
spectrum with the retardation part of the shear spectrum. The equality was checked using literature data, taken
under carefully controlled conditions to ensure the same samples and the same temperature control in both

measurements. The relation is valid in two substances at all measured temperatures. In two other substances, one
can argue that there are good reasons for the deviations that one finds.
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A promising approach for the study of the flow process
in highly viscous liquids is its comparison'™ in different
techniques. One usually finds the dielectric absorption peak
close to the heat-capacity one,'™ but the shear modulus peak is
about half a decade higher in frequency. In a broad distribution
of relaxation times, a modulus peak always appears at a
higher frequency than a susceptibility (compliance) peak.’:*
The question is whether this is the reason here.

It is easy to convince oneself that the inversion of the
dielectric susceptibility to a dielectric modulus does not solve
the problem. If the difference between the static and the
high-frequency dielectric susceptibility is small compared to
the latter, as in the cases discussed in the present Brief Report,
one gets practically no peak shift. If it is large, as in the cases
of glycerol and propylene carbonate,? one gets a peak shift by
more than two decades, much too large to explain the observed
difference.

The inversion of the shear modulus G(w) is not trivial,
because its low-frequency limit is zero. In fact, one has two
equivalent textbook descriptions of the shear spectrum of a
liquid,’ a relaxation spectrum H (t) for the description of the
complex shear modulus G(w) (r relaxation time),
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and a retardation spectrum L(t) for the description of the
complex shear compliance,
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Here G is the infinite frequency shear modulus and 7 is the
viscosity. A third material constant hidden in this equation is
the recoverable compliance J?, the elastic compliance plus the
integral over the retardation processes,

o_ 1 =
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Equation (2) makes a separation of two independent
contributions to the compliance: the retardation spectrum and
the viscosity. From our gradually growing understanding of the
highly viscous liquid,”'® we know that both parts must come
from thermally activated transitions between inherent states,
stable structures corresponding to minima of the potential-
energy landscape. The retardation spectrum is due to back
jumps into the initial inherent state, the viscosity is due
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to no-return processes. The retardation description separates
these two influences, the relaxation description does not.

It has been argued that the Zwanzig-Mori formalism
requires a relaxation description,'! with the bath processes
contributing both to relaxation and to viscosity. A different
picture results from the asymmetry model,'?> based on exper-
imental evidence for a strong asymmetry of the secondary
relaxation.'? In this picture, the viscous flow occurs when
a distorted inner core domain does not jump back into
its undistorted ground state, but relaxes by the relaxation
processes of the surroundings. This implies separate viscosity
and relaxation processes, so the retardation scheme should
apply. Also, the viscous flow should not be accompanied by
a dielectric signal, because the molecules of the inner domain
do not change their orientation in the flow process. Thus one
expects the equality of the dielectric spectrum with the shear
retardation spectrum in the asymmetry model.

It is interesting to consider a liquid with no back-jump
preference. For a stationary flow in such a liquid, the removal
of the constant shear stress would only result in the immediate
recoverable compliance 1/ G, because there is no reason for a
further back flow. There would be no retardation spectrum; the
Maxwell time 1), = /G would be the only relaxation time
and GJS =1

In a real liquid, one finds an extremely broad spectrum of
relaxation times and measured values'* of GJ? of the order
of 3. Numerical simulations'® also find a large back-jump
probability for the thermally activated transitions between
the inherent states. Thus it is always possible to define a
normalized shear retardation susceptibility x;,,
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Xsr 1s normalized with respect to the compliance step; the
function begins with the value 1 at low frequency and ends
with O at high frequency.

With J(w) =1/G(w) and Eq. (2), one can translate
Eq. (4) to

()_;<L_l+;> 5)
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On the dielectric side, one can pragmatically!® define a
normalized dielectric susceptibility

Xsr (0)) =

€(w) — €nigh

Ae ’ ©

Xe(w) =
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where ey, is the real part of the dielectric constant in the GHz
range and Ae = €; — epigp (€; is the static susceptibility of the
liquid). This is again normalized, beginning with the value 1 at
low frequency and going down to zero at high frequency. The
comparison is done for four samples with a relatively small
Ae (smaller than 0.15): TPE (triphenylethylene), squalane,
1,4-polybutadiene, and DC704, a silicon oil used in diffusion
pumps.’

One way to compare is to fit G(w), then calculate the
shear retardation susceptibility from this fit and compare to
the dielectric measurement. The fit is better than the data
themselves, because small deviations in G(w) at low w tend
to explode in the calculated retardation spectrum (see, for
example, the increasing error bars in Figs. 3 and 4 of Schroter
and Donth’s paper?). The fit also supplies the three parameters
G, n, and Jeo needed for the calculation of the normalized
shear retardation susceptibility. If one restricts oneself to a
comparison of the imaginary parts, Ae is the only parameter
which has to be adapted to the dielectric data.

The procedure does not remove the accuracy problem
at low frequency completely; the position of the resulting
shear susceptibility o peak remains rather sensitive to the
fit parameters for G(w). The physical reason for this is the
viscosity, which overshadows the low-frequency relaxations
in a shear measurement (but not in a dielectric measurement).
Here, G(w) was modeled in terms of the asymmetry model,'2
introducing as an extra parameter a width w of the cutoff at
the critical barrier V. in order to get the best possible fit.

In TPE, the first example, the relation is fulfilled within
experimental error. This is seen in Fig. 1. Figure 1(a) shows
the fit to G(w), Fig. 1(b) the comparison of the dielectric to
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FIG. 1. Validity of the relation in triphenylethylene (TPE). (a) Fit
of dynamical shear data (Ref. 5) at 260 K. (b) Comparison of the
measured dielectric damping to the shear retardation damping at the
same temperature.
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FIG. 2. Validity of the relation in squalane. (a) Fit of dynamical
shear data (Ref. 5) at 172 K. (b) Comparison of the measured dielectric
damping at 172 and 190 K to the shear retardation damping at the
two temperatures, respectively. The arrows show the positions of the
peak in G”(w).

the shear retardation susceptibility. Other temperatures yield
the same result.

The same good agreement is found in squalane, our second
example. Figure 2(a) shows again the fit to G(w) at 172 K,
Fig. 2(b) shows the comparison between dielectric and shear
retardation susceptibility damping at two temperatures, 172
and 190 K. This case is particularly impressive, because the
shift between shear modulus and dielectric peak increases from
half a decade at the glass transition to one and a half at higher
temperatures. Nevertheless, one finds good agreement at all
temperatures, though the secondary peak is clearly weaker in
dielectrics than in shear.

The third case, DC704 in Fig. 3, does not show the perfect
agreement of the two previous cases. The shear retardation
susceptibility o peak lies a bit to the right of the dielectric
one. However, one also finds a slightly higher negative slope
in the €” data, indicating a decrease of the ratio of the coupling
constants of the elementary relaxations to dielectrics and shear
with increasing frequency. If one corrects with a decrease of
6% per frequency decade, one recovers a good fit. Again, the
result does not depend on temperature.

The last case, 1,4-polybutadiene (more precisely, a mixture
of 80% 1,4-polybutadiene and 20% 1,2-polybutadiene) in
Fig. 4 shows strong differences, with the shear retardation
susceptibility peak an order of magnitude slower than the
dielectric one. Here, the deviations are much too pronounced
to be repaired by the simple scaling which worked for DC704.
However, this complete breakdown is in fact understandable.
1,4-polybutadiene consists of two kinds of monomers, cis and
trans, with the cis-monomers responsible for the dielectric sig-
nal. A recent thorough simulation study?® of 1,4-polybutadiene
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FIG. 3. Peak shift in DC704 (a) Fit of dynamical shear data
(Ref. 5) at 219.5 K. (b) Comparison of the measured dielectric
damping to the shear retardation damping at the same temperature
(continuous line). The dashed line is obtained assuming a decrease
of the dielectrics-shear coupling ratio by 6% per frequency decade.

finds that their response is decidedly faster than the one of the
trans monomers.

Our findings are not completely independent on our
choice of a model'? for G(w); taking other models, one
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FIG. 4. Strong differences in polybutadiene. (a) Fit of dynamical
shear data (Ref. 5) at 180 K. (b) Comparison of the measured dielectric
damping to the shear retardation damping at the same temperature.
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can even fit G(w) with a diverging recoverable compliance.’

However, the results can be checked independently by an
alternative procedure. One can fit the dielectric data first with
a Havriliak-Negami function (adding a Cole-Cole function for
the secondary peak if necessary). With this fit, one calculates
a normalized dielectric susceptibility from Eq. (6). Then, one
can check whether this susceptibility describes the G(w) data
correctly according to Eq. (5), taking not only G, 7, and J, eo
as free parameters, but also the time constant of the Havriliak-
Negami function. If this agrees with the one in the dielectric fit
within experimental error (about a tenth of a decade) and if the
fitis satisfactory, one again concludes that the shear retardation
and dielectric fluctuation spectra agree. In our four cases, this
procedure corroborated the results from the G(w) fit, thus
supporting the choice of a shear model with a finite recoverable
compliance.

Note that the identity of dielectric and shear retardation
spectra found in two of our four cases has a different reason
from the one of energy and density fluctuation spectra in
strongly correlated liquids®'>> with a Prigogine-Defay ratio
close to 1. In that case, the identity of the spectra is due to the
strong correlation of the fluctuations. In our case, dielectric
and shear fluctuations are not correlated at all, because a vector
cannot be correlated with a tensor for symmetry reasons. Equal
spectra do not necessarily imply strong correlation, though
strong correlation implies equal spectra.

The equality of the spectra must rather result from
the decay mechanism. If the local strain disappears com-
pletely in a transition between two inherent states, the
same must be true for the local dipole moment. In par-
ticular, the full decay of the shear strain should be ac-
companied by a full decay of the dielectric polarization
(counterexamples are the normal modes in polymers? or the
monoalcohols?*).

Summarizing the experimental and numerical evidence,
one has two substances with identical shear retardation
and dielectric spectra at all measured temperatures within
experimental accuracy and two other substances where one
has good reasons to attribute the deviations to the fre-
quency dependence of the coupling ratio. It seems to be
the generic situation in glass-forming liquids that the spec-
tra agree. Nevertheless, for particular materials microscopic
peculiarities may cause significant deviations like the one in
1,4-polybutadiene.

The finding provides a solid basis for the detailed compari-
son of the two most important techniques in the study of highly
viscous liquids. If the spectra do not agree, one can search for
the microscopic reason. If the spectra agree, the two techniques
are complementary. The dielectric data provide the exact shape
of the retardation spectrum, in particular at the low-frequency
end, which is not well seen in the shear measurement. The
shear data supply the three material constants, shear modulus,
viscosity, and recoverable compliance, which together with
the spectrum describe the flow. Such a description opens
up the exciting possibility to look for relations between the
three material constants and the spectrum, to see whether one
can find a new concept of the flow process, hopefully even
one in which the viscosity emerges quantitatively out of the
spectrum.

052201-3



BRIEF REPORTS

The paper profited a lot from intense discussions
with the Roskilde group, in particular Niels Boie Olsen,
Bo Jakobsen, Kristine Niss, Tage Christensen, Albena Nielsen,

PHYSICAL REVIEW B 83, 052201 (2011)

and Tina Hecksher. Also, very helpful discussions with
Robert Pick, Reiner Zorn, and Andreas Wischnewski are
gratefully acknowledged.

“buchenau-juelich@t-online.de

'K. L. Ngai and R. W. Rendell, Phys. Rev. B 41, 754 (1990).

2K. Schréter and E. Donth, J. Non-Cryst. Solids 307-310, 270
(2002).

3S. Corezzi, M. Beiner, K. Huth, K. Schroter, S. Capaccioli,
R. Casalini, D. Fioretto, and E. Donth, J. Chem. Phys. 117, 2435
(2002).

4L. Carpentier, O. Bastin, and M. Descamps, J. Phys. D 35, 402
(2002).

SK. Niss, B. Jakobsen, and N. B. Olsen, J. Chem. Phys. 123, 234510
(2005); B. Jakobsen, K. Niss, and N. B. Olsen, ibid. 123, 234511
(2005); data available at the website [http://glass.ruc.dk/data/].

C. Gainaru, O. Lips, A. Troshagina, R. Kahlau, A. Brodin, F. Fujara,
and E. A. Rossler, J. Chem. Phys. 128, 147505 (2008).

"D. J. Ferry, Viscoelastic Properties of Polymers, 3rd ed. (John Wiley,
New York, 1980), Chap. 3.

8E. Donth, Relaxation and Thermodynamics
(Akademie-Verlag, Berlin, 1992), p. 31 ff.

°P. G. Debenedetti and F. H. Stillinger, Nature (London) 410, 259
(2001).

10A. Heuer, J. Phys.: Condens. Matter 20, 373101 (2008).

"R, Pick (private communication). The argument is based on the
fact that a mechanical modulus can be calculated directly from the
Zwanzig-Mori formalism, while a mechanical compliance cannot.
For details, see T. Franosch, A. Latz and R. Pick, Eur. Phys.
J. B 31, 229 (2003); T. Franosch and R. Pick, ibid. 47, 341
(2005).

12U. Buchenau, J. Chem. Phys. 131, 074501 (2009).

in Polymers

13]. C. Dyre and N. B. Olsen, Phys. Rev. Lett. 91, 155703 (2003).

4D, J. Plazek, C. H. Bero, and L-C. Chay, J. Non-Cryst. Solids
172-174, 181 (1994).

50ne should be aware of possible problems with this definition.
The first is the difference between external and internal fields
(Ref. 16), which requires more complicated expressions like the
one of Fatuzzo and Mason (Ref. 17). For this reason, the present
work restricts itself to examples with a small Ae, where the
Fatuzzo-Mason expression equals the simple Eq. 8 given here within
experimental error. The second possible problem is the exclusion
of high-frequency contributions of the molecular rotation (Refs. 5,
18, and 19), which are in principle part of the dielectric spectrum
and will contribute as well to the shear spectrum. The definition of
Eq. (6) excludes this high-frequency part of the spectra.

16G. Williams, Chem. Rev. 72, 55 (1972).

17E. Fatuzzo and P. R. Mason, Proc. Phys. Soc. 90, 729 (1967).

18T, Keyes and D. Kievelson, J. Chem. Phys. 54, 1786 (1971).

19C. Dreyfus, A. Aouadi, R. M. Pick, T. Berger, A. Patkowski, and
W. Steffen, Eur. J. Phys. B 9, 401 (1999).

20A. Narros, A. Arbe, F. Alvarez, J. Colmenero, and D. Richter,
J. Chem. Phys. 128, 224905 (2008).

2IN. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schroeder, and J. C.
Dyre, J. Chem. Phys. 129, 184507 (2008).

22T. B. Schroeder, N. P. Bailey, U. R. Pedersen, N. Gnan, and J. C.
Dyre, J. Chem. Phys. 131, 234503 (2009).

23K. Adachi and T. Kotaka, Macromolecules 18, 466 (1985).

24B. Jakobsen, C. Maggi, T. Christensen, and J. C. Dyre, J. Chem.
Phys. 129, 184502 (2008).

052201-4



