001     20030
005     20240712101031.0
024 7 _ |a 10.5194/acp-11-3865-2011
|2 DOI
024 7 _ |a WOS:000290014300021
|2 WOS
024 7 _ |a 2128/9938
|2 Handle
024 7 _ |a altmetric:15630613
|2 altmetric
037 _ _ |a PreJuSER-20030
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Meteorology & Atmospheric Sciences
100 1 _ |0 P:(DE-HGF)0
|a Riipinen, I.
|b 0
245 _ _ |a Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations
260 _ _ |a Katlenburg-Lindau
|b EGU
|c 2011
300 _ _ |a 3865 - 3878
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 9601
|a Atmospheric Chemistry and Physics
|v 11
|x 1680-7316
|y 8
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a Henry and Camille Dreyfus foundation, Maj and Tor Nessling foundation, Academy of Finland Centre of Excellence program (project no. 1118615) and the European Commission 7th framework programme EUCAARI (contract no. 036833-2) are acknowledged. The Egbert measurements were supported by Environment Canada and the Canadian Foundation for Climate and Atmospheric Sciences, through the CAFC network.
520 _ _ |a Atmospheric aerosol particles influence global climate as well as impair air quality through their effects on atmospheric visibility and human health. Ultrafine (< 100 nm) particles often dominate aerosol numbers, and nucleation of atmospheric vapors is an important source of these particles. To have climatic relevance, however, the freshly nucleated particles need to grow in size. We combine observations from two continental sites (Egbert, Canada and Hyytiala, Finland) to show that condensation of organic vapors is a crucial factor governing the lifetimes and climatic importance of the smallest atmospheric particles. We model the observed ultrafine aerosol growth with a simplified scheme approximating the condensing species as a mixture of effectively non-volatile and semi-volatile species, demonstrate that state-of-the-art organic gas-particle partitioning models fail to reproduce the observations, and propose a modeling approach that is consistent with the measurements. We find that roughly half of the mass of the condensing mass needs to be distributed proportional to the aerosol surface area (thus implying that the condensation is governed by gas-phase concentration rather than the equilibrium vapour pressure) to explain the observed aerosol growth. We demonstrate the large sensitivity of predicted number concentrations of cloud condensation nuclei (CCN) to these interactions between organic vapors and the smallest atmospheric nanoparticles highlighting the need for representing this process in global climate models.
536 _ _ |0 G:(DE-Juel1)FUEK491
|2 G:(DE-HGF)
|a Atmosphäre und Klima
|c P23
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-HGF)0
|a Pierce, J.R.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Yli-Juuti, T.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Nieminen, T.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Häkkinen, S.
|b 4
700 1 _ |0 P:(DE-Juel1)144056
|a Ehn, M.
|b 5
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Junninen, H.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Lehtipalo, K.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Petäjä, T.
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Slowik, J.
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Chang, R.
|b 10
700 1 _ |0 P:(DE-HGF)0
|a Shantz, N.C.
|b 11
700 1 _ |0 P:(DE-HGF)0
|a Abbatt, J.
|b 12
700 1 _ |0 P:(DE-HGF)0
|a Leaitch, W.R.
|b 13
700 1 _ |0 P:(DE-HGF)0
|a Kerminen, V.-M.
|b 14
700 1 _ |0 P:(DE-HGF)0
|a Worsnop, D.R.
|b 15
700 1 _ |0 P:(DE-HGF)0
|a Pandis, S.N.
|b 16
700 1 _ |0 P:(DE-HGF)0
|a Donahue, N.M.
|b 17
700 1 _ |0 P:(DE-HGF)0
|a Kulmala, M.
|b 18
773 _ _ |0 PERI:(DE-600)2069847-1
|a 10.5194/acp-11-3865-2011
|g Vol. 11, p. 3865 - 3878
|p 3865 - 3878
|q 11<3865 - 3878
|t Atmospheric chemistry and physics
|v 11
|x 1680-7316
|y 2011
856 7 _ |u http://dx.doi.org/10.5194/acp-11-3865/2011/
856 4 _ |u https://juser.fz-juelich.de/record/20030/files/acp-11-3865-2011.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/20030/files/acp-11-3865-2011.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/20030/files/acp-11-3865-2011.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/20030/files/acp-11-3865-2011.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/20030/files/acp-11-3865-2011.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:20030
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
913 1 _ |0 G:(DE-Juel1)FUEK491
|a DE-HGF
|b Erde und Umwelt
|k P23
|l Atmosphäre und Klima
|v Atmosphäre und Klima
|x 0
|z vormals P22
913 2 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-249H
|2 G:(DE-HGF)POF3-200
|v Addenda
|x 0
914 1 _ |y 2011
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|g IEK
|k IEK-8
|l Troposphäre
|x 0
970 _ _ |a VDB:(DE-Juel1)135107
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21