000020049 001__ 20049
000020049 005__ 20240610120934.0
000020049 0247_ $$2DOI$$a10.1088/1742-5468/2012/02/P02001
000020049 0247_ $$2WOS$$aWOS:000300904900002
000020049 037__ $$aPreJuSER-20049
000020049 041__ $$aeng
000020049 082__ $$a530
000020049 084__ $$2WoS$$aMechanics
000020049 084__ $$2WoS$$aPhysics, Mathematical
000020049 1001_ $$0P:(DE-Juel1)VDB86155$$aHirschberg, O.$$b0$$uFZJ
000020049 245__ $$aDiffusion in a logarithmic potential: scaling and selection in the approach to equilibrium
000020049 260__ $$aBristol$$bIOP Publ.$$c2012
000020049 300__ $$aP02001
000020049 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000020049 3367_ $$2DataCite$$aOutput Types/Journal article
000020049 3367_ $$00$$2EndNote$$aJournal Article
000020049 3367_ $$2BibTeX$$aARTICLE
000020049 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000020049 3367_ $$2DRIVER$$aarticle
000020049 440_0 $$013281$$aJournal of Statistical Mechanics : Theory and Experiment$$v2012$$x1742-5468
000020049 500__ $$aWe thank A Amir, A Bar, O Cohen, N Davidson, J-P Eckmann, M R Evans, and T Sadhu for useful discussions and comments on the paper. This work was supported by the Israel Science Foundation (ISF).
000020049 520__ $$aThe equation which describes a particle diffusing in a logarithmic potential arises in diverse physical problems such as momentum diffusion of atoms in optical traps, condensation processes, and denaturation of DNA molecules. A detailed study of the approach of such systems to equilibrium via a scaling analysis is carried out, revealing three surprising features: (i) the solution is given by two distinct scaling forms, corresponding to a diffusive (x similar to root t) and a subdiffusive (x << root t) length scale, respectively; (ii) the scaling exponents and scaling functions corresponding to both regimes are selected by the initial condition; and (iii) this dependence on the initial condition manifests a 'phase transition' from a regime in which the scaling solution depends on the initial condition to a regime in which it is independent of it. The selection mechanism which is found has many similarities to the marginal stability mechanism, which has been widely studied in the context of fronts propagating into unstable states. The general scaling forms are presented and their practical and theoretical applications are discussed.
000020049 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x0
000020049 588__ $$aDataset connected to Web of Science
000020049 650_7 $$2WoSType$$aJ
000020049 65320 $$2Author$$astochastic processes (theory)
000020049 65320 $$2Author$$adiffusion
000020049 7001_ $$0P:(DE-Juel1)VDB8425$$aMukamel, D.$$b1$$uFZJ
000020049 7001_ $$0P:(DE-Juel1)130966$$aSchütz, G.M.$$b2$$uFZJ
000020049 773__ $$0PERI:(DE-600)2138944-5$$a10.1088/1742-5468/2012/02/P02001$$gVol. 2012, p. P02001$$pP02001$$q2012<P02001$$tJournal of statistical mechanics: theory and experiment$$v2012$$x1742-5468$$y2012
000020049 8567_ $$uhttp://dx.doi.org/10.1088/1742-5468/2012/02/P02001
000020049 909CO $$ooai:juser.fz-juelich.de:20049$$pVDB
000020049 9131_ $$0G:(DE-Juel1)FUEK505$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x0
000020049 9132_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft  Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000020049 9141_ $$y2012
000020049 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000020049 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000020049 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000020049 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000020049 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000020049 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000020049 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000020049 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000020049 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000020049 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$gICS$$kICS-2$$lTheorie der weichen Materie und Biophysik$$x0
000020049 970__ $$aVDB:(DE-Juel1)135131
000020049 980__ $$aVDB
000020049 980__ $$aConvertedRecord
000020049 980__ $$ajournal
000020049 980__ $$aI:(DE-Juel1)ICS-2-20110106
000020049 980__ $$aUNRESTRICTED
000020049 981__ $$aI:(DE-Juel1)IBI-5-20200312
000020049 981__ $$aI:(DE-Juel1)IAS-2-20090406