001     20049
005     20240610120934.0
024 7 _ |2 DOI
|a 10.1088/1742-5468/2012/02/P02001
024 7 _ |2 WOS
|a WOS:000300904900002
037 _ _ |a PreJuSER-20049
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Mechanics
084 _ _ |2 WoS
|a Physics, Mathematical
100 1 _ |a Hirschberg, O.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB86155
245 _ _ |a Diffusion in a logarithmic potential: scaling and selection in the approach to equilibrium
260 _ _ |a Bristol
|b IOP Publ.
|c 2012
300 _ _ |a P02001
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Statistical Mechanics : Theory and Experiment
|x 1742-5468
|0 13281
|v 2012
500 _ _ |a We thank A Amir, A Bar, O Cohen, N Davidson, J-P Eckmann, M R Evans, and T Sadhu for useful discussions and comments on the paper. This work was supported by the Israel Science Foundation (ISF).
520 _ _ |a The equation which describes a particle diffusing in a logarithmic potential arises in diverse physical problems such as momentum diffusion of atoms in optical traps, condensation processes, and denaturation of DNA molecules. A detailed study of the approach of such systems to equilibrium via a scaling analysis is carried out, revealing three surprising features: (i) the solution is given by two distinct scaling forms, corresponding to a diffusive (x similar to root t) and a subdiffusive (x << root t) length scale, respectively; (ii) the scaling exponents and scaling functions corresponding to both regimes are selected by the initial condition; and (iii) this dependence on the initial condition manifests a 'phase transition' from a regime in which the scaling solution depends on the initial condition to a regime in which it is independent of it. The selection mechanism which is found has many similarities to the marginal stability mechanism, which has been widely studied in the context of fronts propagating into unstable states. The general scaling forms are presented and their practical and theoretical applications are discussed.
536 _ _ |a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|c P45
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK505
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a stochastic processes (theory)
653 2 0 |2 Author
|a diffusion
700 1 _ |a Mukamel, D.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB8425
700 1 _ |a Schütz, G.M.
|b 2
|u FZJ
|0 P:(DE-Juel1)130966
773 _ _ |a 10.1088/1742-5468/2012/02/P02001
|g Vol. 2012, p. P02001
|p P02001
|q 2012|0 PERI:(DE-600)2138944-5
|t Journal of statistical mechanics: theory and experiment
|v 2012
|y 2012
|x 1742-5468
856 7 _ |u http://dx.doi.org/10.1088/1742-5468/2012/02/P02001
909 C O |o oai:juser.fz-juelich.de:20049
|p VDB
913 1 _ |b Schlüsseltechnologien
|k P45
|l Biologische Informationsverarbeitung
|1 G:(DE-HGF)POF2-450
|0 G:(DE-Juel1)FUEK505
|2 G:(DE-HGF)POF2-400
|v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l BioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
914 1 _ |y 2012
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1020
|2 StatID
|b Current Contents - Social and Behavioral Sciences
920 1 _ |k ICS-2
|l Theorie der weichen Materie und Biophysik
|g ICS
|0 I:(DE-Juel1)ICS-2-20110106
|x 0
970 _ _ |a VDB:(DE-Juel1)135131
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-2-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21