| Home > Publications database > CAG repeats determine brain atrophy in spinocerebellar ataxia 17: a VBM study > print |
| 001 | 20071 | ||
| 005 | 20200423203159.0 | ||
| 024 | 7 | _ | |a pmid:21311576 |2 pmid |
| 024 | 7 | _ | |a pmc:PMC3023761 |2 pmc |
| 024 | 7 | _ | |a 10.1371/journal.pone.0015125 |2 DOI |
| 024 | 7 | _ | |a WOS:000286520600008 |2 WOS |
| 024 | 7 | _ | |a 2128/11174 |2 Handle |
| 037 | _ | _ | |a PreJuSER-20071 |
| 041 | _ | _ | |a eng |
| 082 | _ | _ | |a 500 |
| 084 | _ | _ | |2 WoS |a Biology |
| 100 | 1 | _ | |0 P:(DE-Juel1)VDB99272 |a Reetz, K. |b 0 |u FZJ |
| 245 | _ | _ | |a CAG repeats determine brain atrophy in spinocerebellar ataxia 17: a VBM study |
| 260 | _ | _ | |a Lawrence, Kan. |b PLoS |c 2011 |
| 300 | _ | _ | |a e15125 |
| 336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a article |2 DRIVER |
| 440 | _ | 0 | |0 18181 |a PLOS One |v 6 |x 1932-6203 |y 1 |
| 500 | _ | _ | |3 POF3_Assignment on 2016-02-29 |
| 500 | _ | _ | |a KR was funded by the DFG Translational Brain Research in Psychiatry and Neurology (DFG ZUK32/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. |
| 520 | _ | _ | |a Abnormal repeat length has been associated with an earlier age of onset and more severe disease progression in the rare neurodegenerative disorder spinocerebellar ataxia 17 (SCA17).To determine whether specific structural brain degeneration and rate of disease progression in SCA17 might be associated with the CAG repeat size, observer-independent voxel-based morphometry was applied to high-resolution magnetic resonance images of 16 patients with SCA17 and 16 age-matched healthy controls. The main finding contrasting SCA17 patients with healthy controls demonstrated atrophy in the cerebellum bilaterally. Multiple regression analyses with available genetic data and also post-hoc correlations revealed an inverse relationship again with cerebellar atrophy. Moreover, we found an inverse relationship between the CAG repeat length and rate of disease progression.Our results highlight the fundamental role of the cerebellum in this neurodegenerative disease and support the genotype-phenotype relationship in SCA17 patients. Genetic factors may determine individual susceptibility to neurodegeneration and rate of disease progression. |
| 536 | _ | _ | |0 G:(DE-Juel1)FUEK255 |2 G:(DE-HGF) |a Neurowissenschaften |c L01 |x 0 |
| 588 | _ | _ | |a Dataset connected to Web of Science, Pubmed |
| 650 | _ | 2 | |2 MeSH |a Adult |
| 650 | _ | 2 | |2 MeSH |a Age of Onset |
| 650 | _ | 2 | |2 MeSH |a Atrophy: genetics |
| 650 | _ | 2 | |2 MeSH |a Atrophy: metabolism |
| 650 | _ | 2 | |2 MeSH |a Brain: pathology |
| 650 | _ | 2 | |2 MeSH |a Case-Control Studies |
| 650 | _ | 2 | |2 MeSH |a Cerebellum: pathology |
| 650 | _ | 2 | |2 MeSH |a Disease Progression |
| 650 | _ | 2 | |2 MeSH |a Female |
| 650 | _ | 2 | |2 MeSH |a Humans |
| 650 | _ | 2 | |2 MeSH |a Magnetic Resonance Imaging |
| 650 | _ | 2 | |2 MeSH |a Male |
| 650 | _ | 2 | |2 MeSH |a Middle Aged |
| 650 | _ | 2 | |2 MeSH |a Nerve Degeneration: genetics |
| 650 | _ | 2 | |2 MeSH |a Spinocerebellar Ataxias: genetics |
| 650 | _ | 2 | |2 MeSH |a Spinocerebellar Ataxias: pathology |
| 650 | _ | 2 | |2 MeSH |a Trinucleotide Repeats |
| 650 | _ | 7 | |2 WoSType |a J |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Kleinman, A. |b 1 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Klein, C. |b 2 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Lencer, R. |b 3 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Zuehlke, C. |b 4 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Brockmann, K. |b 5 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Rolfs, A. |b 6 |
| 700 | 1 | _ | |0 P:(DE-Juel1)VDB112 |a Binkofski, F. |b 7 |u FZJ |
| 773 | _ | _ | |0 PERI:(DE-600)2267670-3 |a 10.1371/journal.pone.0015125 |g Vol. 6, p. e15125 |p e15125 |q 6 |v 6 |x 1932-6203 |y 2011 |
| 856 | 7 | _ | |2 Pubmed Central |u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023761 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/20071/files/journal.pone.0015125.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/20071/files/journal.pone.0015125.gif?subformat=icon |x icon |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/20071/files/journal.pone.0015125.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/20071/files/journal.pone.0015125.jpg?subformat=icon-700 |x icon-700 |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/20071/files/journal.pone.0015125.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:20071 |p openaire |p open_access |p driver |p VDB |p dnbdelivery |
| 913 | 1 | _ | |0 G:(DE-Juel1)FUEK255 |a DE-HGF |b Leben |k L01 |l Funktion und Dysfunktion des Nervensystems |v Neurowissenschaften |x 0 |
| 913 | 2 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-579H |2 G:(DE-HGF)POF3-500 |v Addenda |x 0 |
| 914 | 1 | _ | |y 2011 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 3.0 |0 LIC:(DE-HGF)CCBY3 |2 HGFVOC |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a JCR/ISI refereed |0 StatID:(DE-HGF)0010 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-4-20090406 |g INM |k INM-4 |l Physik der Medizinischen Bildgebung |x 0 |
| 970 | _ | _ | |a VDB:(DE-Juel1)135160 |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a ConvertedRecord |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a I:(DE-Juel1)INM-4-20090406 |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|