000200791 001__ 200791
000200791 005__ 20240619091948.0
000200791 0247_ $$2doi$$a10.1103/PhysRevB.91.094421
000200791 0247_ $$2Handle$$a2128/8613
000200791 0247_ $$2WOS$$aWOS:000351426000001
000200791 037__ $$aFZJ-2015-03186
000200791 082__ $$a530
000200791 1001_ $$0P:(DE-HGF)0$$aLefmann, K.$$b0$$eCorresponding Author
000200791 245__ $$aDynamic rotor mode in antiferromagnetic nanopartciles
000200791 260__ $$aCollege Park, Md.$$bAPS$$c2015
000200791 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1431956687_3907
000200791 3367_ $$2DataCite$$aOutput Types/Journal article
000200791 3367_ $$00$$2EndNote$$aJournal Article
000200791 3367_ $$2BibTeX$$aARTICLE
000200791 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000200791 3367_ $$2DRIVER$$aarticle
000200791 520__ $$aWe present experimental, numerical, and theoretical evidence for an unusual mode of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering experiments on 8-nm particles of hematite display a loss of diffraction intensity with temperature, the intensity vanishing around 150 K. However, the signal from inelastic neutron scattering remains above that temperature, indicating a magnetic system in constant motion. In addition, the precession frequency of the inelastic magnetic signal shows an increase above 100 K. Numerical Langevin simulations of spin dynamics reproduce all measured neutron data and reveal that thermally activated spin canting gives rise to an unusual type of coherent magnetic precession mode. This “rotor” mode can be seen as a high-temperature version of superparamagnetism and is driven by exchange interactions between the two magnetic sublattices. The frequency of the rotor mode behaves in fair agreement with a simple analytical model, based on a high-temperature approximation of the generally accepted Hamiltonian of the system. The extracted model parameters, such as the magnetic interaction and the axial anisotropy, are in excellent agreement with results from Mössbauer spectroscopy.
000200791 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000200791 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000200791 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x2
000200791 542__ $$2Crossref$$i2015-03-19$$uhttp://link.aps.org/licenses/aps-default-license
000200791 7001_ $$0P:(DE-HGF)0$$aJacobsen, H.$$b1
000200791 7001_ $$0P:(DE-HGF)0$$aGarde, J.$$b2
000200791 7001_ $$0P:(DE-HGF)0$$aHedegard, P.$$b3
000200791 7001_ $$0P:(DE-Juel1)131040$$aWischnewski, Andreas$$b4$$ufzj
000200791 7001_ $$0P:(DE-HGF)0$$aAncona, S. N.$$b5
000200791 7001_ $$0P:(DE-HGF)0$$aJacobsen, H. S.$$b6
000200791 7001_ $$0P:(DE-HGF)0$$aBahl, C. R. H.$$b7
000200791 7001_ $$0P:(DE-HGF)0$$aTheil Kuhn, L.$$b8
000200791 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.91.094421$$bAmerican Physical Society (APS)$$d2015-03-19$$n9$$p094421$$tPhysical Review B$$v91$$x1098-0121$$y2015
000200791 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.91.094421$$n9$$p094421$$tPhysical review / B$$v91$$x1098-0121$$y2015
000200791 8564_ $$uhttps://juser.fz-juelich.de/record/200791/files/PhysRevB.91.094421.pdf$$yOpenAccess
000200791 8564_ $$uhttps://juser.fz-juelich.de/record/200791/files/PhysRevB.91.094421.gif?subformat=icon$$xicon$$yOpenAccess
000200791 8564_ $$uhttps://juser.fz-juelich.de/record/200791/files/PhysRevB.91.094421.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000200791 8564_ $$uhttps://juser.fz-juelich.de/record/200791/files/PhysRevB.91.094421.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000200791 8564_ $$uhttps://juser.fz-juelich.de/record/200791/files/PhysRevB.91.094421.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000200791 8564_ $$uhttps://juser.fz-juelich.de/record/200791/files/PhysRevB.91.094421.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000200791 8564_ $$uhttps://juser.fz-juelich.de/record/200791/files/PhysRevB.91.094421.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000200791 909CO $$ooai:juser.fz-juelich.de:200791$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000200791 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131040$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000200791 9130_ $$0G:(DE-HGF)POF2-451$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$vSoft Matter Composites$$x0
000200791 9130_ $$0G:(DE-HGF)POF2-54G24$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen und Ionen (PNI)$$vJCNS$$x1
000200791 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000200791 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000200791 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000200791 9141_ $$y2015
000200791 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000200791 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000200791 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000200791 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000200791 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000200791 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000200791 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000200791 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000200791 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000200791 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000200791 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000200791 9201_ $$0I:(DE-Juel1)ICS-1-20110106$$kICS-1$$lNeutronenstreuung $$x0
000200791 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000200791 9801_ $$aFullTexts
000200791 980__ $$ajournal
000200791 980__ $$aVDB
000200791 980__ $$aFullTexts
000200791 980__ $$aUNRESTRICTED
000200791 980__ $$aI:(DE-Juel1)ICS-1-20110106
000200791 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000200791 981__ $$aI:(DE-Juel1)IBI-8-20200312
000200791 981__ $$aI:(DE-Juel1)JCNS-1-20110106
000200791 981__ $$aI:(DE-Juel1)JCNS-1-20110106
000200791 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/anie.200602866
000200791 999C5 $$1S. Mørup$$2Crossref$$oS. Mørup Comprehensive Nanoscience and Technology 2011$$tComprehensive Nanoscience and Technology$$y2011
000200791 999C5 $$1L. Néel$$2Crossref$$oL. Néel 1949$$y1949
000200791 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.130.1677
000200791 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF00895017
000200791 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/19/21/213202
000200791 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjb/e2008-00122-1
000200791 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/25/1/008
000200791 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.79.4910
000200791 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/epl/i2001-00279-7
000200791 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0304-8853(03)00457-8
000200791 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.70.214411
000200791 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.74.184406
000200791 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/18/49/013
000200791 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.174414
000200791 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.89.064402
000200791 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4862235
000200791 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0022-3727/47/36/365003
000200791 999C5 $$1A. H. Morrish$$2Crossref$$oA. H. Morrish Canted Antiferromagnetism: Hematite 1994$$tCanted Antiferromagnetism: Hematite$$y1994
000200791 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.142.137
000200791 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nimb.2004.07.005
000200791 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nimb.2006.01.023
000200791 999C5 $$1W. H. Press$$2Crossref$$oW. H. Press Numerical Recipes in C 2007$$tNumerical Recipes in C$$y2007
000200791 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/epl/i1998-00442-2
000200791 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0304-8853(00)00372-3
000200791 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/pssb.19700420125
000200791 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.58.14937
000200791 999C5 $$1L. D. Landau$$2Crossref$$oL. D. Landau Statistical Physics 1980$$tStatistical Physics$$y1980
000200791 999C5 $$1K. F. Riley$$2Crossref$$oK. F. Riley Mathematical Methods for Physics and Engineering 2007$$tMathematical Methods for Physics and Engineering$$y2007