000200818 001__ 200818
000200818 005__ 20220628190223.0
000200818 0247_ $$2doi$$a10.1103/PhysRevD.91.096002
000200818 0247_ $$2ISSN$$a0556-2821
000200818 0247_ $$2ISSN$$a1089-4918
000200818 0247_ $$2ISSN$$a1550-2368
000200818 0247_ $$2ISSN$$a1550-7998
000200818 0247_ $$2Handle$$a2128/8617
000200818 0247_ $$2WOS$$aWOS:000353881200013
000200818 0247_ $$2altmetric$$aaltmetric:3982580
000200818 037__ $$aFZJ-2015-03203
000200818 082__ $$a530
000200818 1001_ $$0P:(DE-HGF)0$$aFrancis, A.$$b0$$eCorresponding Author
000200818 245__ $$aCritical point and scale setting in SU(3) plasma: An update
000200818 260__ $$a[S.l.]$$bSoc.$$c2015
000200818 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2015-05-05
000200818 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2015-05-01
000200818 3367_ $$2DRIVER$$aarticle
000200818 3367_ $$2DataCite$$aOutput Types/Journal article
000200818 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1656389777_5975
000200818 3367_ $$2BibTeX$$aARTICLE
000200818 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000200818 3367_ $$00$$2EndNote$$aJournal Article
000200818 520__ $$aWe explore a method developed in statistical physics which has been argued to have exponentially small finite-volume effects, in order to determine the critical temperature ${T}_{\mathrm{c}}$ of pure SU(3) gauge theory close to the continuum limit. The method allows us to estimate the critical coupling ${\beta}_{c}$ of the Wilson action for temporal extents up to ${N}_{\tau}\sim20$ with $\lesssim0.1$% uncertainties. Making use of the scale setting parameters ${r}_{0}$ and $\sqrt{{t}_{0}}$ in the same range of $\beta$-values, these results lead to the independent continuum extrapolations ${T}_{\mathrm{c}}{r}_{0}=0.7457(45)$ and ${T}_{\mathrm{c}}\sqrt{{t}_{0}}=0.2489(14)$, with the latter originating from a more convincing fit. Inserting a conversion of ${r}_{0}$ from literature (unfortunately with much larger errors) yields ${T}_{\mathrm{c}}/{\mathrm{\Lambda}}_{\overline{\mathrm{MS}}}=1.24(10)$.
000200818 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000200818 536__ $$0G:(DE-Juel1)jara0108_20141101$$aMassive current--current correlators in thermal QCD (jara0108_20141101)$$cjara0108_20141101$$fMassive current--current correlators in thermal QCD$$x1
000200818 536__ $$0G:(DE-Juel1)jara0039_20121101$$aTowards controlled QCD transport coefficients (jara0039_20121101)$$cjara0039_20121101$$fTowards controlled QCD transport coefficients$$x2
000200818 542__ $$2Crossref$$i2015-05-05$$uhttp://link.aps.org/licenses/aps-default-license
000200818 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000200818 7001_ $$0P:(DE-HGF)0$$aKaczmarek, O.$$b1
000200818 7001_ $$0P:(DE-HGF)0$$aLaine, M.$$b2
000200818 7001_ $$0P:(DE-Juel1)132210$$aNeuhaus, T.$$b3
000200818 7001_ $$0P:(DE-HGF)0$$aOhno, H.$$b4
000200818 77318 $$2Crossref$$3journal-article$$a10.1103/physrevd.91.096002$$b : American Physical Society (APS), 2015-05-05$$n9$$p096002$$tPhysical Review D$$v91$$x1550-7998$$y2015
000200818 773__ $$0PERI:(DE-600)2844732-3$$a10.1103/PhysRevD.91.096002$$gVol. 91, no. 9, p. 096002$$n9$$p096002$$tPhysical review / D$$v91$$x1550-7998$$y2015
000200818 8564_ $$uhttps://juser.fz-juelich.de/record/200818/files/PhysRevD.91.096002.pdf$$yOpenAccess
000200818 8564_ $$uhttps://juser.fz-juelich.de/record/200818/files/PhysRevD.91.096002.gif?subformat=icon$$xicon$$yOpenAccess
000200818 8564_ $$uhttps://juser.fz-juelich.de/record/200818/files/PhysRevD.91.096002.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000200818 8564_ $$uhttps://juser.fz-juelich.de/record/200818/files/PhysRevD.91.096002.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000200818 8564_ $$uhttps://juser.fz-juelich.de/record/200818/files/PhysRevD.91.096002.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000200818 8564_ $$uhttps://juser.fz-juelich.de/record/200818/files/PhysRevD.91.096002.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000200818 8564_ $$uhttps://juser.fz-juelich.de/record/200818/files/PhysRevD.91.096002.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000200818 909CO $$ooai:juser.fz-juelich.de:200818$$popenaire$$pdnbdelivery$$pdriver$$pVDB$$popen_access
000200818 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132210$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000200818 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000200818 9130_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000200818 9141_ $$y2015
000200818 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000200818 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000200818 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000200818 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000200818 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000200818 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000200818 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000200818 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000200818 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000200818 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000200818 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000200818 920__ $$lyes
000200818 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000200818 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000200818 980__ $$ajournal
000200818 980__ $$aVDB
000200818 980__ $$aI:(DE-Juel1)JSC-20090406
000200818 980__ $$aI:(DE-82)080012_20140620
000200818 980__ $$aUNRESTRICTED
000200818 9801_ $$aFullTexts