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We explore a method developed in statistical physics which has been argued to have exponentially small

finite-volume effects, in order to determine the critical temperature Tc of pure SU(3) gauge theory close to

the continuum limit. The method allows us to estimate the critical coupling βc of the Wilson action for

temporal extents up toNτ ∼ 20with≲0.1% uncertainties. Making use of the scale setting parameters r0 and
ffiffiffiffi

t0
p

in the same range of β-values, these results lead to the independent continuum extrapolations Tcr0 ¼
0.7457ð45Þ and Tc

ffiffiffiffi

t0
p ¼ 0.2489ð14Þ, with the latter originating from a more convincing fit. Inserting a

conversion of r0 from literature (unfortunately with much larger errors) yields Tc=ΛMS
¼ 1.24ð10Þ.
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I. INTRODUCTION

Even though light quarks play an essential role for the

phenomenological understanding of heavy ion collision

experiments, it can be argued that, due to their large

multiplicity in the initial state and their Bose-enhanced

distribution functions in the plasma phase, gluons are the

single most important degree of freedom influencing the

formation and evolution of QCD matter. Gluons are also

much easier to study with nonperturbative lattice methods

than light quarks. Therefore, studies of pure SU(3) gauge

theory at high temperature continue to constitute an important

laboratory system, both for developing numerical techniques

and for gaining physics understanding on observables for

which a high precision is needed. Recent examples of topics

studied include scale setting, renormalization, and methods

for statistical error reduction (cf. e.g. Refs. [1–5]). Our own

interest stems from attempts to measure real-time observables

such as transport coefficients [6–8], in which case theoreti-

cally well-founded methods [9] can probably be applied (if at

all) only after the infinite volume and continuum limits have

been reached with a high precision [10].

In the present contribution, we use the pure SU(3) gauge

theory as a test bench for studying finite-volume scaling in

the vicinity of a first-order phase transition. Concretely, our

primary goal is to determine the critical coupling βc for

values of Nτ much larger than have been achieved before

[here Nτ ≡ 1=ðaTÞ is the number of lattice points in the

periodic imaginary-time direction, a is the lattice spacing,

and T is the temperature]. Let us remark that values of βc as a

function of Nτ have attracted recent interest as tests of

semianalytic models [11,12], and indeed new high-precision

values at large Nτ put the functional dependences predicted

by these frameworks under tension [7].

The second focus point of our study is that of scale

setting [13]. In particular, we consider two scales that have

been frequently employed, denoted by r0 [14] and
ffiffiffiffi

t0
p

[15]. Neither of these scales has a direct physics inter-

pretation; however, they are relatively straightforward to

measure and can in principle be related to physical

quantities in a separate study. On the other hand, in the

thermal context, there is one directly physical quantity, the

critical temperature Tc, which would have certain advan-

tages as a scale setting parameter, permitting for instance

for an easy comparison of theories with different matter

contents but with similar macroscopic properties (this

assumes, of course, that all theories considered have a

sharply defined transition point). Therefore, we make use

of our results in order to obtain a largely independent

estimate for Tcr0 [16] and a new estimate for Tc

ffiffiffiffi

t0
p

.

It should be acknowledged, however, that close to the

continuum limit we also see indications of growing

systematic uncertainties, particularly in the case of r0.
The plan of this paper is the following. After introducing

and testing the basic method of our study in Sec. II, we

employ it in order to estimate the critical coupling βc as a

function of Nτ in Sec. III. The issue of scale setting is

addressed in Sec. IV, and we conclude in Sec. V.

II. METHOD

The Wilson plaquette action,

SW ≡
β

6

X

x;μ;ν

Trð1 − PμνÞ; ð1Þ
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studied on an Nτ × N3
s lattice with periodic boundary

conditions in all directions, has a global Z(3) symmetry

that is broken at and above the transition point for Ns → ∞.

We denote the location of the transition point by βc.

Theoretical arguments [17] and empirical evidence [18]

suggest that this is a first-order phase transition.

It has been shown through a study of q-state Potts

models in three dimensions [19,20] that, even though most

observables, such as susceptibilities, show powerlike finite-

volume effects at a first-order transition point, there is a

particular definition of a pseudocritical point for which

finite-volume effects are exponentially suppressed. This is

obtained if the “weights” of the phases with no degeneracy

(wc) and with q-fold degeneracy (wd) are related through

qwc ¼ wd: ð2Þ

The weight can be defined through the “volume” of the

distribution of some observable which has a good overlap

with the order parameter. More formally, the weight

corresponds to the partition function associated with the

phase considered.

For SU(3), a suitable observable is the Polyakov loop

expectation value. Carrying out measurements in the

vicinity of βc, we define

sðβÞ≡ 3wc − wd

3wc þ wd

: ð3Þ

By construction sðβÞ equals þ1 deep in the confined phase

and −1 deep in the deconfined phase. The critical point is

obtained by interpolating to the location where sðβcÞ ¼ 0.

To implement the idea, we need to introduce a criterion

for separating a distribution into contributions from differ-

ent phases. In a finite volume, when the distributions

overlap, the procedure is not unique. In this study, we

define a separatrix by looking for a minimum in the

distribution of ReP, where P denotes the Polyakov loop

[cf. Fig. 1 (left)]. This minimum is employed for defining a

triangle separating the two phases [cf. Fig. 1 (middle)].

The resulting weights are the inputs for Eq. (3); βc is

obtained by a linear interpolation from points on both sides

of the zero [cf. Fig. 1 (right)].

The results obtained with this procedure are shown in

Fig. 2 for Nτ ¼ 4. They have been normalized to a classic

value from Ref. [18] and are compared with recent high-

precision pseudocritical points extracted from Polyakov

loop susceptibility maxima [21]. We conclude that for

Ns > 3Nτ no finite-volume effects can be observed within

our resolution (∼0.005%). For Ns < 3Nτ, we expect βc to

be slightly underestimated.
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FIG. 1 (color online). Left: Determination of the rightmost minimum (open circle) from the distribution of ReP. Middle:

The corresponding triangle separating the two phases, with the vertical line placed at the position of the open circle. Right:

The resulting function sðβÞ [cf. Eq. (3)], permitting for an estimate of βc from the crossing of zero. The statistics of each data point is

Oð105Þ sweeps; statistical errors are based on jackknife estimates.

2 3 4 5 6 7 8 9 10

N
s
 / Nτ

0.9996

0.9997

0.9998

0.9999

1.0000

1.0001

1.0002

β c /
 5

.6
9

2
5

4

geometric criterion

susceptibility max

Nτ = 4

FIG. 2 (color online). The pseudocritical couplings extracted

from our method at Nτ ¼ 4 (closed circles), normalized to the

central value of the infinite-volume estimate βc ¼ 5.69254ð24Þ
from Ref. [18]. We also compare with susceptibility maxima from

Ref. [21] (open squares). The gray band illustrates our infinite-

volume extrapolation (constant fit to Ns=Nτ > 3).
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III. RESULTS AT FINITE LATTICE SPACING

We carried out measurements for 4 ≤ Nτ ≤ 22, increasing

Nτ in steps of 2. We computed on several volumes for

ensembles with Nτ ≤ 18, verifying that volume dependence

is below statistical uncertainties. Subsequently we fit the

data at Ns > 3Nτ to a constant. Given the resources at our

disposal, we used a single spatial extent Ns ¼ 64 for

Nτ ¼ 20, 22. Here, minor finite-volume effects start to

contaminate our results. However, based on Fig. 2, we

expect the effects from a simulation with Ns=Nτ ¼ 64=22 ¼
2.9 to be below the 0.01% level, thereby being much

below statistical errors. In contrast, at the smallest Nτ where

statistical errors are extremely small, we have artificially

saturated the errors at a constant value ∼0.005%, correspond-

ing to the expected uncertainty from finite-volume effects.

Our final results at fixed Nτ, together with previous estimates

from the literature, are collected in Table I.

IV. CONTINUUM EXTRAPOLATIONS

In this section we convert the lattice-specific numbers

of Table I to values of Tc in physical units. To achieve this

two different scale setting parameters are considered, r0
and

ffiffiffiffi

t0
p

, with the latter leading to a noticeably better

description of the thermal data (cf. Sec. IV B).

A. Scale r0

The scale r0=a [14] has been measured as a function of β

in Refs. [24,25] (see Ref. [26] and references therein for

previous work). We complement these results by a new set

of simulations, with parameter values and results listed in

Table II. The measurements were separated by 500 heat

bath over-relaxation updates. A number of standard tech-

niques for statistical error reduction [27–29] were imple-

mented in order to obtain these results. The static potential

was extracted from Wilson loops with an ansatz based on

two exponentials. The distance appearing in the static

potential was tree-level improved [25], and subsequently

a B-spline interpolation was carried out in order to extract

r0=a from its definition [14]. (Note that, due to the several

steps involved, measurements are costly, and systematic

errors are difficult to get fully under control, particularly at

large β.)

To permit for a subsequent interpolation, our data and

older values [24,25] are fit in the range β ∈ ð5.7; 6.92Þ to a

rational ansatz inspired by Ref. [30],

ln

�

r0

a

�

¼
�

β

12b0
þ b1

2b2
0

ln

�

6b0

β

��

1þc1=βþc2=β
2

1þc3=βþc4=β
2
; ð4Þ

TABLE I. The infinite-volume critical points of SU(3) gauge theory according to various studies. Ntotal indicates

the total numbers of configurations (all volumes and values of β). Our data are based on constant fits to Ns > 3Nτ

whenever several volumes are available. For Nτ ¼ 4, 6 we have artificially enlarged the errors to account for

systematics related to exponentially small volume corrections (cf. the text).

Nτ βc [18,22] βc [21] βc [23] βc [our value] Ns used Ntotal

4 5.69254(24) 5.692469(42) � � � 5.69275(28) 14,…,40 83 × 106

5 � � � � � � 5.8000(5) � � � � � � � � �
6 5.8941(5) 5.89410(11) � � � 5.89425(29) 20,…,40 28 × 106

8 6.0624(10) 6.06212(44) � � � 6.06239(38) 28, 32 4.2 × 106

10 � � � � � � � � � 6.20873(47) 32,…,56 15 × 106

12 6.3380(17) � � � � � � 6.33514(45) 40,…,72 21 × 106

14 � � � � � � � � � 6.4473(18) 48, 56 12 × 106

16 � � � � � � � � � 6.5457(40) 64 2.5 × 106

18 � � � � � � � � � 6.6331(20) 56, 64 3.6 × 106

20 � � � � � � � � � 6.7132(26) 64 4.0 × 106

22 � � � � � � � � � 6.7986(65) 64 5.9 × 106

TABLE II. The results for r0=a that have been used in our

analysis. For β ¼ 6.3 only the largest volume (indicated with an

asterisk) has been included in subsequent fits. The values from

Ref. [25], marked with a double asterisk, do not come directly

from r0 but rather another scale rc, which has been converted into
r0 through a continuum relation, of which the systematic

uncertainties are included in the errors.

β r0=a [24] r0=a [25]

r0=a
[our value] Nτ × N3

s Nconf

5.7 2.922(9) � � � � � � � � � � � �
5.8 3.673(5) � � � � � � � � � � � �
5.95 4.898(12) � � � � � � � � � � � �
6.07 6.033(17) � � � � � � � � � � � �
6.2 7.380(26) � � � � � � � � � � � �
6.3 � � � � � � 8.52(4) 32 × 323 216

6.3 � � � � � � 8.51(2) 32 × 483 211

6.3 � � � � � � 8.52ð2Þ⋆ 32 × 643 202

6.336 � � � � � � 8.95(3) 64 × 323 220

6.4 � � � � � � 9.80(3) 36 × 363 206

6.5 � � � � � � 11.16(2) 44 × 443 202

6.57 � � � 12.18ð10Þ⋆⋆ � � � � � � � � �
6.69 � � � 14.20ð12Þ⋆⋆ � � � � � � � � �
6.81 � � � 16.54ð12Þ⋆⋆ � � � � � � � � �
6.92 � � � 19.13ð15Þ⋆⋆ � � � � � � � � �
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where b0 ≡ 11=ð4πÞ2 and b1 ≡ 102=ð4πÞ4. The fit param-

eters obtained read
1

c1 ¼ −8.17273; c2 ¼ 14.9600; c3 ¼ −3.95983;

c4 ¼ −5.30334; χ2=d:o:f: ¼ 0.7: ð5Þ
Based on the above equation, we convert the results

in Table I to values of r0Tc: r0Tc ¼ ðr0=aÞðβcÞ=Nτ.

Subsequently we perform the extrapolation ða=r0Þ2 → 0

using a fit quadratic in ða=r0Þ2, illustrated in Fig. 3 (left),

with the result

r0Tc ¼ 0.7457ð45Þ; χ2=d:o:f: ¼ 6.7: ð6Þ
The error includes a rough estimate of systematic effects,

encompassing the central values obtained by replacing

the representation in Eq. (4) through lnðr0=aÞ ¼
P

3

n¼0
anðβ − 6.25Þn, by carrying out the continuum

extrapolation with a cubic fit, and by omitting βc corre-

sponding to Nτ ¼ 4. The first method increases the central

value (Tcr0 ≃ 0.7496), and the second and third decrease

it (Tcr0 ≃ 0.7412, 0.7424, respectively). However, in the

first case, the quality of the continuum fit decreases further

from the already poor one in Eq. (6), whereas in the second

case, the scatter of the data in Fig. 3 (left) suggests that

including too much freedom in the fit distorts the outcome.

A possible reason for the poor description of the data close

to the continuum limit could be that estimates of r0=a at

β > 6.4 are systematically on the low side (by ∼Oð1%Þ),
but unfortunately we have not been able to confirm this

suspicion.

The result in Eq. (6) can be compared with r0Tc ≃

0.7470ð7Þ obtained in Ref. [7] based on peak positions of

Polyakov loop susceptibilities (here only statistical errors

were included),
2
as well as with the earlier value r0Tc ¼

0.7498ð50Þ [16].
Finally, we recall that e.g. the values r0ΛMS

¼ 0.586ð48Þ
[25], r0ΛMS

¼ 0.602ð48Þ [31], r0ΛMS
¼ 0.614ð6Þ [32], and

r0ΛMS
¼ 0.637ð32Þ [33] can be found in the literature (the

third relies on the applicability of tadpole-improved lattice

perturbation theory and the fourth of continuum perturbation

theory at hadronic scales). Using the second value yields

Tc=ΛMS
¼ 1.24ð10Þ. Unfortunately the error is dominated

by that in the relation of r0 and Λ
MS

, so our new result in

Eq. (6) does not help to improve on previous estimates.

B. Scale
ffiffiffiffi

t0

p

The scale
ffiffiffiffi

t0
p

is defined through the time that it takes for

Wilson flow to adjust a chosen observable (≡E) to a

predefined value [15]. We measured t0 for a number of

β≃ βc, as listed in Table I. To study possible systematic

effects, we made use of three different implementations of

E, based on the standard plaquette, tree-level improved, and

clover discretizations, all of which are available within the

DD-HMC package [34]. Like for r0, the measurements

were separated by 500 heat bath over-relaxation updates;

the volumes and the numbers of configurations used for

measurements are shown in Table III.

Given that the β values of Table I correspond to the

critical point, a set of fixed physical volumes can be chosen

by scaling the corresponding Nτ by a constant amount.
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FIG. 3 (color online). Left: Continuum extrapolation of Tcr0, based on the data in Table I and the interpolation from Eq. (5). Right:

Analogous results for Tc

ffiffiffiffi

t0
p

from the Wilson (open circles) and Wilson tree-level improved (closed circles) discretizations, interpolated

according to Eq. (7).

1
For the sake of reproducibility of subsequent results, we show

more digits than are statistically significant.

2
For fixed Nτ the results of Ref. [7] are consistent with the

present ones; however, their uncertainties from finite-volume
effects are larger, and only values up to Nτ ¼ 16 could be
reached. Therefore, systematic errors would be larger than in the
present study (but are more difficult to estimate reliably).
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Setting Ns ¼ 4Nτ we ensure that the box size is

L ¼ 4=Tc ≃ 5.3r0. For the smallest β, we have carried

out test simulations also at larger volumes, finding con-

sistent results apart from the “clover” discretization for

which volume dependence on the 3% level is visible. For

our final results, we quote only those obtained with the two

variants of the “Wilson” discretization that did not exhibit

any volume dependence within statistical precision.

Nevertheless systematic errors do grow with β, because

a longer integration trajectory in t is needed and because

autocorrelation times tend to grow.

As before, we represent the data as in Eq. (4) for the

interpolation, only this time replacing r0 →
ffiffiffiffi

t0
p

. The result-

ing parameters are (for the Wilson imp. discretization)
3

c1 ¼ −10.2116; c2 ¼ 25.6819; c3 ¼ −5.64462;

c4 ¼ 2.26845; χ2=d:o:f: ¼ 2.3: ð7Þ

With this interpolation the critical values in Table I can be

converted into Tc

ffiffiffiffi

t0
p

; results are shown in Fig. 3 (right). A fit

quadratic in a2=t0 yields

Tc

ffiffiffiffi

t0
p ¼ 0.2489ð14Þ; χ2=d:o:f: ¼ 1.5: ð8Þ

The error bar here includes a rough estimate of systematic

effects, encompassing the central values obtained by

(i) replacing Wilson imp. by Wilson or even the formerly

excluded clover data, (ii) replacing the representation in

Eq. (4) through lnð ffiffiffiffi

t0
p

=aÞ ¼ P

3

n¼0
anðβ − 6.25Þn, (iii) car-

rying out the continuum extrapolation with a cubic fit,

and (iv) omitting βc corresponding to Nτ ¼ 4 from the fit.

The biggest deviations (Tc

ffiffiffiffi

t0
p

≃ 0.250) result either from

using clover data which we assume to suffer from finite-

volume effects or from method (ii) which leads to χ2 larger

by more than an order of magnitude in Eq. (8). (An analysis

based on data for t0=a
2 from previous literature can be found

in Ref. [8] is, however, subject to noticeably larger finite-

volume effects than our current determination.)

Comparing Eq. (8) with Eq. (6), we extract
ffiffiffiffi

t0
p

=r0 ¼
0.3338ð28Þ, in perfect agreement with

ffiffiffiffi

t0
p

=r0 ¼
0.3343ð21Þ from Refs. [15,35]. It is comforting to find a

good agreement from a largely independent analysis.

V. CONCLUSIONS

In this paper we have demonstrated that, with modern

resources and an opportune choice of an observable, the

critical coupling βc of the Wilson plaquette action can be

determined with ≲0.1% errors up to Nτ ∼ 20 (cf. Table I).

Subsequently, the critical temperature Tc of pure SU(3)

gauge theory could serve as a valid scale setting parameter

for values of the Wilson coupling in the range 5.7≲ β ≲ 6.8

(cf. Table I, from which the lattice spacing a is obtained as

a ¼ 1=ðNτTcÞ if we simulate at the βc corresponding toNτ).

Unfortunately these values are not large enough for scale

setting on the very fine lattices (for instance Nτ ¼ 48,

β≃ 7.8) that are being used for studying transport observ-

ables close to the continuum limit [6–8]. Therefore “theo-

retical” quantities like r0 and
ffiffiffiffi

t0
p

continue to be needed as

intermediate steps. On this point our study suggests that, with

comparable numerical effort, employing
ffiffiffiffi

t0
p

may yield more

stable results than r0; however, being assured that systematic

errors are below the percent level remains a challenge for

β > 6.4. If
ffiffiffiffi

t0
p

is indeed used for scale setting, a conversion to

Tc can be carried out through Eq. (8):
ffiffiffiffi

t0
p

Tc ¼ 0.2489ð14Þ.
For various comparisons of lattice data with continuum

perturbation theory, it would be very welcome to improve

on our knowledge of
ffiffiffiffi

t0
p

Λ
MS

, of which the uncertainty is

currently an order of magnitude larger than that of
ffiffiffiffi

t0
p

Tc.
4

TABLE III. Our results for t0=a
2. The β-values correspond approximately to those in Table I (apart from Nτ ¼ 18,

22), withNτ scaled up by a factor 4 in each case. For β ¼ 5.6923 only the largest volume (indicated with an asterisk)

has been included in subsequent fits.

β ðt0=a2ÞWilson ðt0=a2ÞWilson imp: ðt0=a2ÞClover Nτ × N3
s Nconf

5.6923 0.6109(10) 0.8234(9) 1.0124(11) 16 × 163 455

5.6923 0.6103(7) 0.8229(6) 1.0119(7) 16 × 243 313

5.6923 0.6095(5) 0.8220(5) 1.0104(6) 16 × 323 248

5.6923 0.6010(4) 0.8226(4) 0.9905(4) 24 × 323 233

5.6923⋆ 0.6097(3) 0.8223(3) 0.9800(4) 32 × 323 221

5.8941 1.9520(22) 2.0989(22) 2.2889(24) 24 × 243 465

6.0625 3.7129(39) 3.8507(39) 4.0626(41) 32 × 323 673

6.2083 5.9521(65) 6.0873(66) 6.3284(68) 40 × 403 476

6.3352 8.668(11) 8.802(11) 9.076(12) 48 × 483 315

6.4487 11.958(18) 12.091(18) 12.397(18) 56 × 563 254

6.5509 15.769(23) 15.901(23) 16.240(24) 64 × 643 305

6.7130 24.222(35) 24.355(35) 24.752(36) 80 × 803 250

3
For the sake of reproducibility of subsequent results, we show

more digits than are statistically significant.

4
After the appearance of the eprint version of our paper, a

study appeared in which a possible strategy for this task was
suggested [36].
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Another issue worth further consideration is whether the

method of Sec. II, which relied on the breaking of a discrete

symmetry, could be generalized to the case of a continuous

symmetry (such as a chiral symmetry).

ACKNOWLEDGMENTS

We thank M. Müller for collaboration at initial stages of

this project. Our work has been supported in part by the

DFG under Grant No. GRK881, by the SNF under Grant

No. 200020-155935, and by the European Union through

HadronPhysics3 (Grant No. 283286) and ITN STRONGnet

(Grant No. 238353). Simulations were performed using

JARA-HPC resources at the RWTH Aachen (projects

JARA0039 and JARA0108), JUDGE/JUROPA at the JSC

Jülich, the OCuLUS Cluster at the Paderborn Center for

Parallel Computing, and the Bielefeld GPU cluster.

[1] T. Umeda, S. Ejiri, S. Aoki, T. Hatsuda, K. Kanaya, Y.

Maezawa, and H. Ohno, Fixed scale approach to equation of

state in lattice QCD, Phys. Rev. D 79, 051501 (2009).

[2] H. B. Meyer, High-precision thermodynamics and Hagedorn

density of states, Phys. Rev. D 80, 051502 (2009).

[3] Sz. Borsányi, G. Endrödi, Z. Fodor, S. D. Katz, and K. K.

Szabó, Precision SU(3) lattice thermodynamics for a

large temperature range, J. High Energy Phys. 07 (2012)

056.

[4] M. Asakawa, T. Hatsuda, E. Itou, M. Kitazawa, and H.

Suzuki (FlowQCD Collaboration), Thermodynamics of

SU(3) gauge theory from gradient flow on the lattice, Phys.

Rev. D 90, 011501 (2014).

[5] L. Giusti and M. Pepe, Equation of State of a Relativistic

Theory from a Moving Frame, Phys. Rev. Lett. 113, 031601

(2014).

[6] H.-T. Ding, A. Francis, O. Kaczmarek, F. Karsch, E.

Laermann, and W. Soeldner, Thermal dilepton rate and

electrical conductivity: An analysis of vector current corre-

lation functions in quenched lattice QCD, Phys. Rev. D 83,

034504 (2011).

[7] A. Francis, O. Kaczmarek, M. Laine, M. Müller, T. Neuhaus,

and H. Ohno, Proc. Sci., LATTICE 2013 (2014), 453.

[8] T. Neuhaus, Continuum Study of Heavy Quark Diffusion,

arXiv:1504.07374.

[9] G. Cuniberti, E. De Micheli, and G. A. Viano, Reconstruct-

ing the thermal Green functions at real times from those at

imaginary times, Commun. Math. Phys. 216, 59 (2001).

[10] Y. Burnier and M. Laine, Towards flavour diffusion

coefficient and electrical conductivity without ultraviolet

contamination, Eur. Phys. J. C 72, 1902 (2012).

[11] J. Langelage, S. Lottini, and O. Philipsen, Centre symmetric

3d effective actions for thermal SU(N) Yang-Mills from

strong coupling series, J. High Energy Phys. 02 (2011) 057;

07 (2011) 014(E).

[12] X. Cheng and E. T. Tomboulis, Critical couplings and string

tensions via lattice matching of RG decimations, Phys. Rev.

D 86, 074507 (2012).

[13] R. Sommer, Proc. Sci., LATTICE 2013 (2014), 015.

[14] R. Sommer, A New way to set the energy scale in lattice

gauge theories and its applications to the static force

and αs in SU(2) Yang-Mills theory, Nucl. Phys. B411,

839 (1994).

[15] M. Lüscher, Properties and uses of the Wilson flow in lattice

QCD, J. High Energy Phys. 08 (2010) 071; 03 (2014)

092(E).

[16] S. Necco, Universality and scaling behavior of RG gauge

actions, Nucl. Phys. B683, 137 (2004).

[17] B. Svetitsky and L. G. Yaffe, Critical behavior at finite

temperature confinement transitions, Nucl. Phys. B210, 423

(1982).

[18] G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland,

M. Lütgemeier, and B. Petersson, Thermodynamics of

SU(3) lattice gauge theory, Nucl. Phys. B469, 419 (1996).

[19] C. Borgs, R. Kotecký, and S. Miracle-Solé, Finite size

scaling for Potts models, J. Stat. Phys. 62, 529 (1991).

[20] C. Borgs and W. Janke, A New Method to Determine First

Order Transition Points from Finite Size Data, Phys. Rev.

Lett. 68, 1738 (1992).

[21] B. A. Berg and H. Wu, SU(3) deconfining phase transition

with finite volume corrections due to a confined exterior,

Phys. Rev. D 88, 074507 (2013).

[22] B. Beinlich, F. Karsch, E. Laermann, and A. Peikert, String

tension and thermodynamics with tree level and tadpole

improved actions, Eur. Phys. J. C 6, 133 (1999).

[23] B. Lucini, M. Teper, and U. Wenger, The high temperature

phase transition in SU(N) gauge theories, J. High Energy

Phys. 01 (2004) 061.

[24] M. Guagnelli, R. Sommer, and H. Wittig (ALPHA

Collaboration), Precision computation of a low-energy

reference scale in quenched lattice QCD, Nucl. Phys.

B535, 389 (1998).

[25] S. Necco and R. Sommer, The Nf ¼ 0 heavy quark

potential from short to intermediate distances, Nucl. Phys.

B622, 328 (2002).

[26] R. G. Edwards, U. M. Heller, and T. R. Klassen, Accurate

scale determinations for the Wilson gauge action, Nucl.

Phys. B517, 377 (1998).

[27] G. Parisi, R. Petronzio, and F. Rapuano, A measurement of

the string tension near the continuum limit, Phys. Lett. B

128, 418 (1983).

[28] P. de Forcrand and C. Roiesnel, Refined methods for

measuring large distance correlations, Phys. Lett. 151B, 77

(1985).

[29] M. Albanese et al. (APE Collaboration), Glueball masses

and string tension in lattice QCD, Phys. Lett. B 192, 163

(1987).

FRANCIS et al. PHYSICAL REVIEW D 91, 096002 (2015)

096002-6



[30] S. Dürr, Z. Fodor, C. Hoelbling, and T. Kurth, Precision

study of the SU(3) topological susceptibility in the con-

tinuum, J. High Energy Phys. 04 (2007) 055.

[31] S. Capitani, M. Lüscher, R. Sommer, and H. Wittig

(ALPHA Collaboration), Non-perturbative quark mass re-

normalization in quenched lattice QCD, Nucl. Phys. B544,

669 (1999).

[32] M. Göckeler, R. Horsley, A. C. Irving, D. Pleiter, P. E. L.

Rakow, G. Schierholz, and H. Stüben, A Determination of

the Lambda parameter from full lattice QCD, Phys. Rev. D

73, 014513 (2006).

[33] N. Brambilla, X. Garcia i Tormo, J. Soto, and A. Vairo, Pre-

cision determination of r0ΛMS
from the QCD static energy,

Phys. Rev. Lett. 105, 212001 (2010); 108, 269903(E) (2012).

[34] M. Lüscher, http://luscher.web.cern.ch/luscher/DD‑HMC/

index.html.

[35] M. Bruno and R. Sommer (ALPHA Collaboration), Proc

Sci., LATTICE 2013 (2014), 321.

[36] M. Asakawa, T. Hatsuda, T. Iritani, E. Itou, M. Kitazawa,

and H. Suzuki, Accurate Determination of Reference Scales

for Wilson Gauge Action from Yang-Mills Gradient Flow,

arXiv:1503.06516.

CRITICAL POINT AND SCALE SETTING IN SU(3) … PHYSICAL REVIEW D 91, 096002 (2015)

096002-7


