FORSCHUNGSZENTRUM JULICH GmbH
Zentralingtitut fir Angewandte M athematik
D-52425 Jilich, Tel. (02461) 61-6402

Interner Bericht

Polynomial Preconditioning for the
Conjugate Gradient Method
on Massively Parallel Systems

Christof Schelthoff, Achim Basermann

KFA-ZAM-1B-9423

Oktober 1994

(Stand 31.10.94)

Tagungsband des Workshops Uber Parallelverarbeitung, 25.September-1.0ktober 1994, Lessach,
Osterreich

Polynomial Preconditioning for the Conjugate Gradient
Method on Massively Parallel Systems

Christof Schelthoff !

Achim Basermann 2

Central Institute for Applied Mathematics
Research Centre Julich
52425 Julich, Germany

Abstract

A frequently used iterative algorithm for solving large, sparse, symmetric and positive de-
finite systems of linear equations is the method of conjugate gradients (CG). This method
requires one matrix-vector product and some dot products in each iteration. Conver-
gence is dependent on the condition number of the coefficient matrix. So preconditioning
techniques are used to reduce the number of iterations.

In this context, polynomial preconditioning was developped. This method decreases
the total number of dot products by reducing the total number of iterations. Of course,
some additional work has to be done for the preconditioning. When a polynomial of degree
k is used, k matrix-vector products per iteration have to be calculated rather than one. On
scalar machines, this shift between matrix-vector products and dot products influences the
performance of the algorithm only slightly. On massively parallel systems, dot products
require global synchronization, while the calculation of matrix-vector products merely
results in communication with a small number of processors. The actual implementation
used here is based on Chebyshev polynomials. Performance tests were carried out on the
Intel Paragon XP/S 10 with 140 nodes at the Research Centre Jillich (KFA). The CG
method with polynomial preconditioning shows better performance and scalability than
the basic method on massively parallel machines. Additionally there are some numerical
advantages like a higher accuracy and an increased stability.

Keywords: Sparse matrices; Conjugate gradients; Polynomial preconditioning; Cheby-

shev polynomials; Parallelization; Distributed memory

1 Introduction

Many physical problems result in the solution of partial differential equations.
An exact solution can not be found in general. So we consider a discrete so-
lution. Using difference methods or finite element methods we obtain large
sparse systems of linear equations. Often the systems are symmetric and pos-
itive definite (spd). A frequently used method to solve these systems is the
conjugate gradient method (CG). Since convergence depends on the eigen-
value distribution of the coeflicient matrix, we use preconditioning techniques
to accelerate convergence.

Parallelizing the CG method leads to the question which precondition-
ers are suitable to massively parallel machines. A well preconditioned CG

'E-Mail: ch.schelthoff@kfa-juelich.de
?E-Mail: a.basermann@kfa-juelich.de

must at least scale as well as the basic CG. We present a method origi-
nally developped by Rutishauser [15] to improve the stability of CG towards
rounding errrors. The advantage of polynomial preconditioning is that the
total number of iterations is dynamically reduced by varying the degree of
the polynomial. High degrees usually results in a small number of iterations.
This reduces rounding errors in CG that mainly result from the orthogona-
lizations that have to be performed once in each iteration step.

Another reason for using polynomial preconditioning is the pleasant fact
that it is easy to expand an existing CG algorithm with this preconditioner
independent of the specific implementation.

2 The Conjugate Gradient Method

To solve the sparse linear system
Az = f,

we can use the conjugate gradient method if the n x n-matrix A is symmetric
(AT = A) and positive definite (z7Az > 0 V z € IR™\{0}). The latter
condition is equivalent to the statement that all eigenvalues A; of A are
positive.

In the following, we consider the residual r(z) = f — Az, because for
regular A the following equivalence holds:

r(z) = 0 = Az = f.

So the main intention is to find the point, where the residual is the zero-
vector. Using the residual, the real function

F(z) = %r(m)TA_lr(:c)

= %:BTA:B — Tz + %fTA_lf ,
can be defined with the properties
o F(z)>0 VYr(z)#0,
o F(z)=0 r(z)=0.
Note that if A is spd so is A7!. Thus, the minimum z* of F(z) is the

solution of the system Az = f. Secondly, we can calculate the gradient of
this function

grad{F(z)} = Az — f=— r(z)

that is the negative residual. Since A is regular the gradient is only zero
for the global minimum z = z*, and there are no other local minima. The
classical way to find the minimum of a function is the iteration

Tjp1 = T; + Q;p; .7:0717

p; 1s called the search direction, o; the step width.
Once the search direction has been determined, we obtain the optimum
a; for F(z) applying line search

T,.
T P;

P} Ap;’

Oéj:

with rj 1= r(z;).

Using the negative gradient as search direction p;;; that is A—orthogona-
lized to all previous search directions py, . .., p; [7][16] we obtain the conjugate
gradient method for spd linear systems. In that case, r?pj = r?rj holds and

therefore
T

P} Ap;

In each iteration step, the orthogonalization is calculated by

Oéj:

Pir1 = i1 + B;p;

TT T4 . .
with 3; = 2222 Aykanat et al. [2] suggested an alternative calculation of
T TJ
B, using ’
_ (Api)" Ap;
Pi=oj— 70— —1
P; Apy

that allows to calculate §; without knowing the new residual r;;;. Thus, we
can calculate o; and B, successively. The modified CG algorithm is displayed
in fig. 1.

On parallel machines, reductions — the dot products — result in global
synchronization. In the parallel case, the modified algorithm requires only
one synchronization point rather than two in the basic method [2].

In each iteration of the CG method, the following operations have to be
computed:

e 1 matrix-vector product,
e 3 successive dot products,
e 3 vector additions,

e some scalar operations.

Init.: zg, 7o := f — Azg, po := 10

For 7 :=10,1,...
p; Ap;
g — aj(Ap;)TApj .
p; Ap;
Tiy1 = Tjt+ Q;p;
rit1 = T;—oyAp;
Pi+1 = Tit1+ B;p;

until convergence

Figure 1: Modified CG algorithm

2.1 Convergence Properties

The convergence of the CG method depends on the eigenvalue distribution
of A [12]. A criterion for the width of the spectrum is the euclidean condition
number that is for spd matrices

ka(A) 1= Amaz (>1).

min

With ~ := VA7 4o error in the j—th iteration is bounded by
KQ(A)-I—].

Iz — 2" [|< 2¢/m2(A)y’ || 2o — 2" ||

The right hand side increases if the condition number increases. So lower
condition numbers usually accelerate convergence.

3 Preconditioning

The convergence result leads to the idea that a transformation that decreases
the condition number accelerates the convergence. In other words, we want
to find a matrix ¢' — the preconditioner — to perform the following trans-
formation

CAz = Cf.

The aim is to obtain a new implicit coefficent matrix C A with small x(C' A4).
Implicit means that we do not evaluate the matrix product C'- A explicitly, but
we replace the matrix-vector product Ap,; by C - (Ap,) in the CG-algorithm
of fig. 1. That means calculating additional matrix-vector products. Further,
f 1s replaced by C - f in the initialization.

To answer the question which C' are suitable, we have to deal with the
following problems. First, we have the storage problem for C'. Secondly,
we have to guarantee the assumptions of CG, that is, C A must be again
symmetric and positive definite. In this context, polynomial preconditioning
is well suited. Here C' is a polynomial of degree m in A, that means

C=C(A) = Y uA .
=0

We obtain the new system

So P(A) is a polynomial of degree k := m + 1 with P(0) = 0, and we achieve
the CG algorithm with polynomial preconditioning in fig. 2.

Of course the new coeflicent matrix P(A) is symmetric. In each iteration
we now have to calculate P(A)p;, so there are k matrix-vector products
rather than one in the basic method. These matrix-vector products only use
the original matrix A and thus no additional storage is required. Finally, we
have to guarantee that P(A) only has positive eigenvalues.

It is easy to see that if), is an eigenvalue of A, P();) is the corresponding
eigenvalue of P(A). However, we do not know the eigenvalues in general.
Therefore we use the stronger criterion P(§) > 0 V € € [Amin, Mmax] OF
V ¢ €]0,00) to guarantee that P(A) is positive definite.

By polynomial preconditioning of degree k, the number of iterations of
the basic CG can be reduced as follows [3]:

If the basic CG needs igg steps, the CG with polynomial preconditioning
requires at least 1¢g/k steps.

Since we have to calculate k matrix-vector products in each step of the
preconditioned CG rather than one in each step of the basic CG, the to-
tal number of matrix-vector products increases. However, we only have to

Init.: @g, ro :=C(A) - (f — Azg), po =10

For 7 :=10,1,...
o — ’I“;r’l“j
’ P} P(A)p;
T ,
8, = a (P(A;pg) P(A)ps
p; P(A)pj

Tip1 = T+ 0yp;
ris1 = 15— ajP(A)p;
pi+1 = Ti41+ Bip;

until convergence

Figure 2: CG algorithm with polynomial preconditioning

perform one synchronization in each step of both the basic and the precon-
ditioned method. So the reduction of iteration steps leads to less global syn-
chronization. Increasing the degree of the polynomial increases the number
of matrix-vector products but decreases the total number of global synchro-
nizations.

Finally, we have to answer which polynomials are suitable. Remember,
our aim was to obtain a small ka(P(A)) that is close to ka(I) = 1. So we
formulate the following minimization problem for P, — the polynomials of

degree k — with P(0) = 0:
min || I — P(A4) ||

PP,
The solution is norm-dependent. Here we use the spectral norm and obtain
because [— P(A) is symmetric

min max |1 —=P(N\)]| .
PEP, M EVofA

Here we want to find such a polynomial that transforms the original
eigenvalues of A so that they are as close as possible to 1.

Note that in general the eigenvalues are unknown. Thus, we do not
consider the discrete problem but the continous version for 0 < a < b

min max |1 —P(}) |,
PP, X€la,b]

where a and b are estimates for A,,;, and A,,z, the extreme eigenvalues of
A. The solution of this problem is well known and can be expressed using
scaled and translated Chebyshev polynomials [1] [16]

b— 2\ b
Py =1 - TPt

),

where Ty, is the k-th Chebyshev polynomial [14].

The figures 3 and 4 show some of these polynomials. You see that for
even k the function can produce negative eigenvalues if the estimate for the
largest eigenvalue is too small. Therefore, we only use odd k that guarantee
that P(A) is again positive definite for arbitrary a and b.

‘— a=3, b=97, degree k=8

2.005 - a b

1,50+

1.00 ! !

= 0,50
[=1N

-0.50—

-1.00-

Figure 3: Chebyshev polynomial for even k

At last, we have to describe how the estimates ¢ and b for the extreme
eigenvalues can be obtained. The first idea is to use the Gershgorin estimate
for the upper bound and a small value for the lower bound (the Gershgorin
estimate is not suited, because mostly this value is negative). The problem
is that the scaled and translated Chebyshev polynomials are very sensitive
to the lower bound. If this bound is close to zero the polynomial oscillates
extremely as you see in fig. 5.

Hence we need more exact estimates. The connection of the CG method
with the Lanczos method for the real symmetric eigenvalue problem allows to
calculate suitable intervals [a, b] within the spectrum of the implicit coeflicient
matrix P(A). Of course, we need estimates for A itself. If we use odd k and

7

— a=3, b=97, degree k=9

2.00— | a b
1,50
1.00- ‘

= 0,50
[=1N

-0.50—

-1.00-

Figure 4: Chebyshev polynomial for odd &

exploit the Lanczos connection for calculating eigenvalues of P(A) outside the
oscillation zone we can determine approximations of the original eigenvalues
as you see in fig. 4.

Thus the algorithm becomes adaptive. We compute the extreme eigen-
values of P(A) after a certain number of steps and check if they are outside of
the oscillation zone. If so the corresponding original eigenvalue are calculated.
The interval is expanded by updating the values of a and/or b.

A detailed description of the Lanczos connection can be found in [10] and
[16]; more details about polynomial preconditioning with Chebyshev and
other polynomials are described in [1].

Finally, we should remark that the calculation of the coeflicients of the
scaled and translated Chebyshev polynomials is not necessary. The Cheby-
shev tteration [8][16], a 3—term recursion, can be applied.

4 Implementation

Polynomial preconditioning is easy to implement when CG is already paral-
lelized. An advantage of this preconditioner is that algorithmic elements of
the basic CG can be reused. Since polynomial preconditioning only requires
vector additions and matrix-vector products with A, the same parallelization
strategies can be exploited as applied for the basic CG.

For our implementation, we use A. Basermanns basic CG [4][5] [6] that

h
i
\\\E‘II}\:Ih |
£ ﬁﬁ'ﬁ'@fﬁ" T

'.R"."I";':.n:m_\

P{»)

s
|'|I -
| -

Degree k=11 b = 10.0 a from 0.0 to 0.2

Figure 5: Chebyshev polynomials for different lower bounds «

was implemented on an Intel PARAGON X/PS 10 with 140 nodes at the
Research Centre Julich.

In the following, we describe the implementation of the basic CG be-
cause the performance of the preconditioned method mostly depends on the
performance of the matrix-vector product already used in the basic CG.

The description is brief because it is only an example how to imple-
ment the preconditioner. If you are more interested in parallelizing CG on a
distributed memory machine you find a detailed description about data dis-
tribution, communication scheme and their application in iterative methods
like CG and a Lanczos method in [4][5][6].

Parallelizing CG can be divided into several parts. First we have to
distribute the matrix to the processors. Each processor gets a certain number
of successive, complete rows and the corresponding components of all vectors.
Thus, vector additions can be performed locally without communication. Dot

products and reductions, however, require global synchronization.

To balance the computational load in the processors, the rows of the ma-
trix are distributed in such a way that the execution time for each partial
iteration is nearly the same on all processors. This is achieved by a suit-
able data distribution. If we distribute the data to the processors so that
each processor gets the same number of rows the vector—vector operations
are balanced, but if the matrix is unstructured the matrix-vector product is
not balanced. On the other hand, if we distribute the matrix so that each
processor gets the same number of nonzeros of the coeflicient matrix we have
balanced the matrix-vector multiplication but not the vector—vector opera-
tions. Hence, we use a distribution that is between these possibilities. Each
processor gets so much rows that the total number of arithmetic operations of
one partial iteration is (nearly) the same on all processors. This distribution
depends on several conditions, in particular on the specific implementation
and the machine used . A detailed description can be found in [4] or [6].

For computing a matrix-vector multiplication, you need components of
the vector of this operation from other processors. The indices of these com-
ponents only depend on the sparsity pattern of A. So the communication
scheme can be determined before the CG iteration. The matrix-vector prod-
uct is calculated in the following way. First, each processor asynchronously
sends the vector components that are necessary for the partial matrix-vector
multiplication on other processors. Then each processor calculates the local
part of the matrix-vector product. After that, each processor waits until
non—local data arrives and continues the computation of the matrix-vector
product using this data. This is repeated until the computation of the matrix-
vector product is complete, and the iteration is continued without a global
synchronization for the matrix-vector multiplication. Overlapping commu-
nication and calculation results in higher performance for the matrix-vector
product.

5 Results

In this section, we always consider linear systems that are scaled with the
diagonal of the matrix. This diagonal scaling is a simple, frequently used pre-
conditioner.In the following, no preconditioning means only using diagonal
scaling.

For the tests, we used the stopping criterion

5.l — max 2 |(zj41)i — (z;)i]
1<edn” | (2540)i + [(25)i]

that is called the mazimum scaled absolute difference of the components of

<107°

the latest two approximations of the solution vector. (z); denotes the :—th
component of the vector z.

10

5.1 Test matrices

The matrices shown in tab. 1 were used for performance tests.

| Example matrices | n (rows) | nonzeros | k2(4) |

Structural mechanics 1 1,806 63,454 | ~ 10°
Structural mechanics 2 10,974 428,650 | ~ 107
Structural mechanics 3 25,222 | 3,856,386 | ~ 10°
Crash Test 13,860 661,010 | ~ 10°

Table 1: Examples

The first and the second example stem from the Harwell Boeing Set of
Sparse Matrices, example BOSSTK14 and BOSSTK17 [9]. The other ones
were obtained from physical simulation applications at the Research Centre

Julich.

5.2 Numerical Results

We do not want to describe the numerical behaviour of CG in detail. As
mentioned above the preconditioned algorithm increases the stability of the
method. We observed that iteration numbers of the basic CG for the example
crash test vary on parallel machines markedly when we changed the number of
processors used. Using preconditioning we obtained nearly the same number
of steps for different numbers of processors.

A second aspect is that in CG rounding errors are mainly caused by the
orthogonalization that requires the computation of dot products. Reducing
the iteration numbers by preconditioning we reduce rounding errors, and we
get a higher accuracy of the approximation [16].

The question remains if the Chebyshev polynomials are a good choice,
since the optimum reduction (by a factor of k) could be far away from realistic
results. In fig. 6 we see that the polynomials are well suited for the example
structural mechanics 2. The optimum and the values measured are very close
to each other. The other examples show similar results.

5.3 Performance Results

The speedup of CG is usually determined by the matrix-vector product
speedup. However, the CG speedup is lower than the matrix-vector product
speedup because of the badly scalable dot products.

The execution time for a dot product is shown for the largest example
in fig. 7. We see that for large numbers of processors the communication

11

2,500+
2,000+
[%2]
5 - Structural mechanics 2
= 1,500
o — Optimum
1,000+
500+
0 T T T T T T \

Degree k

Figure 6: Iterations for different degrees for structural mechanics 2

time dominates the time for the dot product and so the time increases if
we increase the number of processors. When many processors are used the
overhead of the global synchronization increases; the speedup of the operation
decreases markedly. If polynomial preconditioning is used less dot products
and more matrix-vector products are performed. Thus the CG speedup is
closer to the matrix-vector product speedup. Hence increasing the degree of
the polynomial increases the speedup. The limiting speedup is the matrix-
vector product speedup. However, the speedup — the ratio of the execution
times on one and p processors for a certain degree — is not a criterion for
the best degree on a fixed number of processors. The criterion is a minimal
execution time for a certain degree. With increasing number of processors
higher degrees may result in shorter execution times than smaller degrees of
the polynomial.

In the following, we demonstrate the principal behaviour of polynomial
preconditioning using the (small) example structural mechanics 1. The se-
quential times in seconds for various degrees are given in tab. 2. We see for
this matrix that preconditioning does not improve the performance in the
sequential case, but time increases only slightly.

The scalability properties for different degrees are displayed in tab. 3.
For various numbers of processors, the speedups are shown dependent on the

12

0 3.50
> l @ Execution time
E 3.00" W Calculation time
c
° <« Communication time
E 2,50
=
2.004
1.504
1.004 ’ ‘ '
n o 2
|
0.504 -
< n
< []
0.00 : : : : : n N
1 2 4 38 16 32 64 128

No. of processors

Figure 7: Speedup for one dot product of structural mechanics 3

No preconditioning | Degree k=3 | Degree k=5
14.6 15.7 16.6

Table 2: Sequential execution times in seconds

degree of the polynomial. In the bottom line, the (limiting) speedup of the
matrix-vector product is given.

We see that the gap between matrix-vector product speedup and the
speedup of the CG method with no preconditioning increases if the number of
processors increases. By using polynomial preconditioning this gap becomes
markedly smaller. Tab. 4 shows the corresponding execution times. On 16
and 32 processors, preconditioning already results in shorter execution times.

The behaviour of larger examples is shown in fig. 8, 9 and 10 for a fixed
degree. With polynomial preconditioning the gap between the speedup of
the matrix-vector product and the CG speedup becomes markedly smaller.
Since only speedups are plotted, the best execution times depend on the
sequential times.

For structural mechanics 2, this time is 610 sec. without and 576 sec. with
preconditioning. Here the preconditioned CG already is the better method in
the sequential case. The example crash test has a sequential execution time
of 9366 sec. without and 9992 sec. with preconditioning. The third example

13

‘Speedup: proc. vs. degree H 1 ‘ 2 ‘ 4 ‘ 8 ‘16‘ 32 ‘

No preconditioning 1.0 11934 57|80 9.6
k=3 1.0 1193460187 |11.1
k=5 1.019]34|6.1]9.0]11.8

‘ Matrix-vector product

[1.0]1.9[35[6.8]9.6]13.2]

Table 3: Speedup for various degrees

Execution times‘ 2 ‘ 4 ‘ 8

| 16 | 32 |

No preconditioning

7.8 14.33|2.55 | 1.83 | 1.53

k=3

8.3 | 4.65 | 2.63 | 1.80 | 1.42

k=5

8.8 | 4.87 | 2.71

1.85 | 1.41

Table 4: Execution times for various degrees

has about 4 millions of nonzeros.

Because of the storage requirement, a

sequential run is not performed. We need at least 8 processors to store the

distributed matrix. The time using 8 processors is 117 sec. without and
141.2 sec. with preconditioning. In this case, the time for the preconditioned
method is increased by 20% compared with the basic CG.

In fig. 11, the relative time reduction of the preconditioned method versus
the basic method on one and 128 processors is shown for the three examples.
On 128 processors the preconditioned method is the faster method for all
examples. This demonstrate the advantages of the preconditioner for mas-
sively parallel machines. The execution times on 128 processors are given in

tab. 5.
Execution times Struct. mech. 2 | Struct. mech. 3 | Crash test
128 proc. in sec.
No preconditioning 16.7 12.1 162.7
Polynomial preconditioning;
degree in brackets 13.3 (5) 11.7 (3) 136.9 (9)

Table 5: Execution times for 128 processors with and without preconditioning

14

Speedup

48

= 2
40
e
32
o
=2
D24 - Matrix-vector product only
[0
% - Polynomial preconditioning with degree k=5

~+ No preconditioning

-t
0 16 32 48 64 80 96 112 128
Number of processors

Figure 8: Speedup for structural mechanics 2
104

96

88

80

72

64

56

48

40 - Matrix-vector product only

32

4 Polynomial preconditioning with degree k=3

24

16 - No preconditioning

8,

o+ 17— 77—

0 16 32 48 64 80 96 112 128

Number of processors

Figure 9: Speedup for structural mechanics 3

15

80

72
64
56
48
240
he)
[0}
©32 -
& - Matrix-vector product only
24 4 Polynomial preconditioning with degree k=9
16 - No preconditioning
8
o{"H"H‘_H_H_H_H_H‘
0 16 32 48 64 80 96 12 128
Number of processors
Figure 10: Speedup for crash test
[1 Proc. (8 Proc. for struct. mech. 3) |l 128 Proc.
20.0
20+
16.0
154
%= 10+
g 5.6
5 54 !—‘ 3.3
=]
nel
: |
= 0
()
g u
o —54
>
5 -6.3
& —10+
7“57
0 -17.0
Struct. mech. 2 Struct. mech. 3 Crash Test
k=5 k=3 k=9

Figure 11: Relative time reduction of the preconditioned CG versus the basic

CG

16

6 Conclusions

The method of conjugate gradients with polynomial preconditioning is an
example for the fact that the best parallel algorithm is not the parallelized
version of the best sequential one. The best degree of the polynomial is
not fixed, but depends on several conditions, e.g., the number of processors.
The performance of the preconditoned method is mainly determined by the
speedup of the matrix-vector product.

We saw that increasing the degree leads to more local calculations and less
global communication. By varying the degree of the polynomial, the ratio of
calculation and communication can be controlled. If the speedup of the basic
method decreases for a fixed degree this parameter can be increased to achieve
a better efficiency. Polynomial preconditioning increases the scalability of the
CG method. High degrees of the polynomial result in speedups very close to
the optimum, the speedup of the matrix-vector product.

Further advantages of polynomial preconditioning are an increased sta-
bility and a higher reachable accuracy of the solution compared with the
basic CG.

In addition, polynomial preconditioning is easy to integrate into a parallel
basic CG on a distibuted memory machine.

To sum up, polynomial preconditioning is very attractive for massively
parallel machines.

References

[1] St. Ashby Minimaz Polynomial Preconditioning for Hermitian Linear
Systems, SIAM J.Matrix Anal. Appl.,12:766-789 (1991)

[2] C. Aykanat, F. ()zgiiner, D.S. Scott Vectorization and parallelization of
the conjugate gradient algorithm on hypercube-connected vector proces-
sors, Microprocessing and Microprogramming, 29:67-82 (1990)

[3] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra,
V. Ejjkhout, R. Pozo, C. Romine, H. van der Vorst Templates for the
Solution of Linear Systems, SIAM, Philadelphia (1993)

[4] A. Basermann Datenverteilungs- und Kommunikationsmodelle fir
parallele CG-Verfahren zur Losung von Gleichungssystemen mit
dunnbesetzter Koeffizientenmatriz aus FE-Anwendungen, Aachener
Informatik-Berichte Nr.93-7, Graduiertenkolleg Informatik und Technik,
Fachgruppe Informatik der RWTH Aachen (1993)

[5] A. Basermann Conjugate Gradients parallelized on the Hypercube, Int.
Journal of Modern Physics C, Vol.4, No. 6:1295-1306 (1993)

17

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

A. Basermann Data Distribution and Communication Schemes for Solv-
ing Sparse Systems of Linear Equations from FE Applications by Parallel
CG Methods, Informatik Berichte TU Clausthal, Institut fur Informatik,
Proceedings of the Workshop on Parallel Processing in Lessach, Austria

(1993)

W. Bunse, A. Bunse-Gerstner Numerische Lineare Algebra, Teubner

(1988)
P. Deuflhard, A. Hohmann Numerische Mathematik, de Gruyter (1991)

L.S. Duft User’s Guide for the Harwell-Boeing Sparse Matriz Collection,
Release I, Technical Report TR/PA/92/86, CERFACS, Toulouse Cedex
(1992)

G.H. Golub, Ch.F. van Loan Matriz Computations, 2. Auflage, John
Hopkins University Press (1989)

M.R. Hestenes, E. Stiefel Methods of conjugate gradients for solving
linear systems, Journal of Research of the National Bureau of Standards,

49:409-436 (1952)

J. M. Ortega Introduction to parallel and vector solution of linear sys-

tems, Plenum Press New York, London (1988)

G. Pini, G. Gambolati Is a simple diagonal scaling the best precon-
ditioner for conjugate gradients on supercomputers?, Adv. Water Re-

sources, 13:147-153 (1990)
T.J. Rivlin The Chebyshev Polynomials, John Wiley (1974)

H. Rutishauser Theory of gradient methods, Mitteilungen aus dem In-
stitut fiir angewandte Mathematik, 8:24-49 (1959)

Ch. Schelthoft Vergleich von parallelen Verfahren zur Vorkonditio-
nierung fur die Methode der konjugierten Gradienten, Berichte des
Forschungzentrums Jilich Nr. 2913 (1994)

Y. Saad Practical Use of Polynomial Preconditioning for the Conjugate
Gradient Method, SIAM J. Sci. Stat. Comput., Vol.6, 4:865-881 (1985)

18

