
FORSCHUNGSZENTRUM JÜLICH GmbH
Zentralinstitut für Angewandte Mathematik

D-52425 Jülich, Tel. (02461) 61-6402

Interner Bericht

Polynomial Preconditioning for the
Conjugate Gradient Method

on Massively Parallel Systems

Christof Schelthoff, Achim Basermann

KFA-ZAM-IB-9423

Oktober 1994
(Stand 31.10.94)

Tagungsband des Workshops über Parallelverarbeitung, 25.September-1.Oktober 1994, Lessach,
Österreich

Polynomial Preconditioning for the Conjugate GradientMethod on Massively Parallel SystemsChristof Scheltho� 1Achim Basermann 2Central Institute for Applied MathematicsResearch Centre J�ulich52425 J�ulich, GermanyAbstractA frequently used iterative algorithm for solving large, sparse, symmetric and positive de-�nite systems of linear equations is the method of conjugate gradients (CG). This methodrequires one matrix-vector product and some dot products in each iteration. Conver-gence is dependent on the condition number of the coe�cient matrix. So preconditioningtechniques are used to reduce the number of iterations.In this context, polynomial preconditioning was developped. This method decreasesthe total number of dot products by reducing the total number of iterations. Of course,some additional work has to be done for the preconditioning. When a polynomial of degreek is used, k matrix-vector products per iteration have to be calculated rather than one. Onscalar machines, this shift between matrix-vector products and dot products in
uences theperformance of the algorithm only slightly. On massively parallel systems, dot productsrequire global synchronization, while the calculation of matrix-vector products merelyresults in communication with a small number of processors. The actual implementationused here is based on Chebyshev polynomials. Performance tests were carried out on theIntel Paragon XP/S 10 with 140 nodes at the Research Centre J�ulich (KFA). The CGmethod with polynomial preconditioning shows better performance and scalability thanthe basic method on massively parallel machines. Additionally there are some numericaladvantages like a higher accuracy and an increased stability.Keywords: Sparse matrices; Conjugate gradients; Polynomial preconditioning; Cheby-shev polynomials; Parallelization; Distributed memory1 IntroductionMany physical problems result in the solution of partial di�erential equations.An exact solution can not be found in general. So we consider a discrete so-lution. Using di�erence methods or �nite element methods we obtain largesparse systems of linear equations. Often the systems are symmetric and pos-itive de�nite (spd). A frequently used method to solve these systems is theconjugate gradient method (CG). Since convergence depends on the eigen-value distribution of the coe�cient matrix, we use preconditioning techniquesto accelerate convergence.Parallelizing the CG method leads to the question which precondition-ers are suitable to massively parallel machines. A well preconditioned CG1E-Mail: ch.scheltho�@kfa-juelich.de2E-Mail: a.basermann@kfa-juelich.de 1

must at least scale as well as the basic CG. We present a method origi-nally developped by Rutishauser [15] to improve the stability of CG towardsrounding errrors. The advantage of polynomial preconditioning is that thetotal number of iterations is dynamically reduced by varying the degree ofthe polynomial. High degrees usually results in a small number of iterations.This reduces rounding errors in CG that mainly result from the orthogona-lizations that have to be performed once in each iteration step.Another reason for using polynomial preconditioning is the pleasant factthat it is easy to expand an existing CG algorithm with this preconditionerindependent of the speci�c implementation.2 The Conjugate Gradient MethodTo solve the sparse linear system Ax = f;we can use the conjugate gradient method if the n�n-matrix A is symmetric(AT = A) and positive de�nite (xTAx > 0 8 x 2 IRnnf~0g). The lattercondition is equivalent to the statement that all eigenvalues �i of A arepositive.In the following, we consider the residual r(x) = f � Ax, because forregular A the following equivalence holds:r(x) = ~0 () Ax = f:So the main intention is to �nd the point, where the residual is the zero-vector. Using the residual, the real functionF (x) := 12r(x)TA�1r(x)= 12xTAx� fTx+ 12fTA�1f ;can be de�ned with the properties� F (x) > 0 8 r(x) 6= ~0,� F (x) = 0 r(x) = ~0.Note that if A is spd so is A�1. Thus, the minimum x� of F (x) is thesolution of the system Ax = f . Secondly, we can calculate the gradient ofthis function gradfF (x)g = Ax� f = � r(x)2

that is the negative residual. Since A is regular the gradient is only zerofor the global minimum x = x�, and there are no other local minima. Theclassical way to �nd the minimum of a function is the iterationxj+1 = xj + �jpj j = 0; 1; : : :pj is called the search direction, �j the step width.Once the search direction has been determined, we obtain the optimum�j for F (x) applying line search�j = rTj pjpTj Apj ;with rj := r(xj).Using the negative gradient as search direction pj+1 that is A�orthogona-lized to all previous search directions p0; : : : ; pj [7][16] we obtain the conjugategradient method for spd linear systems. In that case, rTj pj = rTj rj holds andtherefore �j = rTj rjpTj Apj :In each iteration step, the orthogonalization is calculated bypj+1 = rj+1 + �jpjwith �j = rTj+1rj+1rTj rj . Aykanat et al. [2] suggested an alternative calculation of�j using �j = �j (Apj)TApjpTj Apj � 1that allows to calculate �j without knowing the new residual rj+1. Thus, wecan calculate �j and �j successively. The modi�ed CG algorithm is displayedin �g. 1.On parallel machines, reductions | the dot products | result in globalsynchronization. In the parallel case, the modi�ed algorithm requires onlyone synchronization point rather than two in the basic method [2].In each iteration of the CG method, the following operations have to becomputed:� 1 matrix-vector product,� 3 successive dot products,� 3 vector additions,� some scalar operations. 3

Init.: x0; r0 := f �Ax0; p0 := r0For j := 0; 1; : : : �j = rTj rjpTj Apj�j = �j (Apj)TApjpTj Apj � 1xj+1 = xj + �jpjrj+1 = rj � �jApjpj+1 = rj+1 + �jpjuntil convergence Figure 1: Modi�ed CG algorithm2.1 Convergence PropertiesThe convergence of the CG method depends on the eigenvalue distributionof A [12]. A criterion for the width of the spectrum is the euclidean conditionnumber that is for spd matrices�2(A) := �max�min (� 1) :With
 := p�2(A)�1p�2(A)+1 the error in the j�th iteration is bounded byk xj � x� k� 2q�2(A)
j k x0 � x� k :The right hand side increases if the condition number increases. So lowercondition numbers usually accelerate convergence.
4

3 PreconditioningThe convergence result leads to the idea that a transformation that decreasesthe condition number accelerates the convergence. In other words, we wantto �nd a matrix C | the preconditioner | to perform the following trans-formation CAx = Cf:The aim is to obtain a new implicit coe�cent matrix CA with small �(CA).Implicitmeans that we do not evaluate the matrix product C�A explicitly, butwe replace the matrix-vector product Apj by C � (Apj) in the CG-algorithmof �g. 1. That means calculating additional matrix-vector products. Further,f is replaced by C � f in the initialization.To answer the question which C are suitable, we have to deal with thefollowing problems. First, we have the storage problem for C. Secondly,we have to guarantee the assumptions of CG, that is, CA must be againsymmetric and positive de�nite. In this context, polynomial preconditioningis well suited. Here C is a polynomial of degree m in A, that meansC = C(A) = mXi=0 �iAi :We obtain the new system C(A)A| {z }P(A) x = C(A)f:So P(A) is a polynomial of degree k := m+1 with P(0) = 0, and we achievethe CG algorithm with polynomial preconditioning in �g. 2.Of course the new coe�cent matrix P(A) is symmetric. In each iterationwe now have to calculate P(A)pj, so there are k matrix-vector productsrather than one in the basic method. These matrix-vector products only usethe original matrix A and thus no additional storage is required. Finally, wehave to guarantee that P(A) only has positive eigenvalues.It is easy to see that if �i is an eigenvalue of A, P(�i) is the correspondingeigenvalue of P(A). However, we do not know the eigenvalues in general.Therefore we use the stronger criterion P(�) > 0 8 � 2 [�min; �max] or8 � 2 [0;1) to guarantee that P(A) is positive de�nite.By polynomial preconditioning of degree k, the number of iterations ofthe basic CG can be reduced as follows [3]:If the basic CG needs iCG steps, the CG with polynomial preconditioningrequires at least iCG=k steps.Since we have to calculate k matrix-vector products in each step of thepreconditioned CG rather than one in each step of the basic CG, the to-tal number of matrix-vector products increases. However, we only have to5

Init.: x0; r0 := C(A) � (f �Ax0); p0 := r0For j := 0; 1; : : : �j = rTj rjpTj P(A)pj�j = �j (P(A)pj)TP(A)pjpTj P(A)pj � 1xj+1 = xj + �jpjrj+1 = rj � �jP(A)pjpj+1 = rj+1 + �jpjuntil convergenceFigure 2: CG algorithm with polynomial preconditioningperform one synchronization in each step of both the basic and the precon-ditioned method. So the reduction of iteration steps leads to less global syn-chronization. Increasing the degree of the polynomial increases the numberof matrix-vector products but decreases the total number of global synchro-nizations.Finally, we have to answer which polynomials are suitable. Remember,our aim was to obtain a small �2(P(A)) that is close to �2(I) = 1. So weformulate the following minimization problem for Pk | the polynomials ofdegree k | with P(0) = 0: minP2Pk k I �P(A) k :The solution is norm-dependent. Here we use the spectral norm and obtainbecause I �P(A) is symmetricminP2Pk max�i EV of A j 1 �P(�i) j :Here we want to �nd such a polynomial that transforms the originaleigenvalues of A so that they are as close as possible to 1.Note that in general the eigenvalues are unknown. Thus, we do notconsider the discrete problem but the continous version for 0 < a < bminP2Pk max�2[a;b] j 1 �P(�) j ;6

where a and b are estimates for �min and �max, the extreme eigenvalues ofA. The solution of this problem is well known and can be expressed usingscaled and translated Chebyshev polynomials [1] [16]P(�) = 1� Tk(a+ b� 2�b� a)=Tk(a+ bb� a) ;where Tk is the k-th Chebyshev polynomial [14].The �gures 3 and 4 show some of these polynomials. You see that foreven k the function can produce negative eigenvalues if the estimate for thelargest eigenvalue is too small. Therefore, we only use odd k that guaranteethat P(A) is again positive de�nite for arbitrary a and b.
Figure 3: Chebyshev polynomial for even kAt last, we have to describe how the estimates a and b for the extremeeigenvalues can be obtained. The �rst idea is to use the Gershgorin estimatefor the upper bound and a small value for the lower bound (the Gershgorinestimate is not suited, because mostly this value is negative). The problemis that the scaled and translated Chebyshev polynomials are very sensitiveto the lower bound. If this bound is close to zero the polynomial oscillatesextremely as you see in �g. 5.Hence we need more exact estimates. The connection of the CG methodwith the Lanczos method for the real symmetric eigenvalue problem allows tocalculate suitable intervals [a; b] within the spectrum of the implicit coe�cientmatrix P(A). Of course, we need estimates for A itself. If we use odd k and7

Figure 4: Chebyshev polynomial for odd kexploit the Lanczos connection for calculating eigenvalues of P(A) outside theoscillation zone we can determine approximations of the original eigenvaluesas you see in �g. 4.Thus the algorithm becomes adaptive. We compute the extreme eigen-values of P(A) after a certain number of steps and check if they are outside ofthe oscillation zone. If so the corresponding original eigenvalue are calculated.The interval is expanded by updating the values of a and=or b.A detailed description of the Lanczos connection can be found in [10] and[16]; more details about polynomial preconditioning with Chebyshev andother polynomials are described in [1].Finally, we should remark that the calculation of the coe�cients of thescaled and translated Chebyshev polynomials is not necessary. The Cheby-shev iteration [8][16], a 3{term recursion, can be applied.4 ImplementationPolynomial preconditioning is easy to implement when CG is already paral-lelized. An advantage of this preconditioner is that algorithmic elements ofthe basic CG can be reused. Since polynomial preconditioning only requiresvector additions and matrix-vector products with A, the same parallelizationstrategies can be exploited as applied for the basic CG.For our implementation, we use A. Basermanns basic CG [4][5] [6] that8

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

Figure 5: Chebyshev polynomials for di�erent lower bounds awas implemented on an Intel PARAGON X/PS 10 with 140 nodes at theResearch Centre J�ulich.In the following, we describe the implementation of the basic CG be-cause the performance of the preconditioned method mostly depends on theperformance of the matrix-vector product already used in the basic CG.The description is brief because it is only an example how to imple-ment the preconditioner. If you are more interested in parallelizing CG on adistributed memory machine you �nd a detailed description about data dis-tribution, communication scheme and their application in iterative methodslike CG and a Lanczos method in [4][5][6].Parallelizing CG can be divided into several parts. First we have todistribute the matrix to the processors. Each processor gets a certain numberof successive, complete rows and the corresponding components of all vectors.Thus, vector additions can be performed locally without communication. Dot9

products and reductions, however, require global synchronization.To balance the computational load in the processors, the rows of the ma-trix are distributed in such a way that the execution time for each partialiteration is nearly the same on all processors. This is achieved by a suit-able data distribution. If we distribute the data to the processors so thateach processor gets the same number of rows the vector{vector operationsare balanced, but if the matrix is unstructured the matrix-vector product isnot balanced. On the other hand, if we distribute the matrix so that eachprocessor gets the same number of nonzeros of the coe�cient matrix we havebalanced the matrix-vector multiplication but not the vector{vector opera-tions. Hence, we use a distribution that is between these possibilities. Eachprocessor gets so much rows that the total number of arithmetic operations ofone partial iteration is (nearly) the same on all processors. This distributiondepends on several conditions, in particular on the speci�c implementationand the machine used . A detailed description can be found in [4] or [6].For computing a matrix-vector multiplication, you need components ofthe vector of this operation from other processors. The indices of these com-ponents only depend on the sparsity pattern of A. So the communicationscheme can be determined before the CG iteration. The matrix-vector prod-uct is calculated in the following way. First, each processor asynchronouslysends the vector components that are necessary for the partial matrix-vectormultiplication on other processors. Then each processor calculates the localpart of the matrix-vector product. After that, each processor waits untilnon{local data arrives and continues the computation of the matrix-vectorproduct using this data. This is repeated until the computation of the matrix-vector product is complete, and the iteration is continued without a globalsynchronization for the matrix-vector multiplication. Overlapping commu-nication and calculation results in higher performance for the matrix-vectorproduct.5 ResultsIn this section, we always consider linear systems that are scaled with thediagonal of the matrix. This diagonal scaling is a simple, frequently used pre-conditioner.In the following, no preconditioning means only using diagonalscaling.For the tests, we used the stopping criterion�scal = max1�i�n 2 j(xj+1)i � (xj)ijj(xj+1)ij+ j(xj)ij < 10�5that is called the maximum scaled absolute di�erence of the components ofthe latest two approximations of the solution vector. (x)i denotes the i�thcomponent of the vector x. 10

5.1 Test matricesThe matrices shown in tab. 1 were used for performance tests.Example matrices n (rows) nonzeros �2(A)Structural mechanics 1 1,806 63,454 � 106Structural mechanics 2 10,974 428,650 � 107Structural mechanics 3 25,222 3,856,386 � 105Crash Test 13,860 661,010 � 109Table 1: ExamplesThe �rst and the second example stem from the Harwell Boeing Set ofSparse Matrices, example BCSSTK14 and BCSSTK17 [9]. The other oneswere obtained from physical simulation applications at the Research CentreJ�ulich.5.2 Numerical ResultsWe do not want to describe the numerical behaviour of CG in detail. Asmentioned above the preconditioned algorithm increases the stability of themethod. We observed that iteration numbers of the basic CG for the examplecrash test vary on parallel machinesmarkedly when we changed the number ofprocessors used. Using preconditioning we obtained nearly the same numberof steps for di�erent numbers of processors.A second aspect is that in CG rounding errors are mainly caused by theorthogonalization that requires the computation of dot products. Reducingthe iteration numbers by preconditioning we reduce rounding errors, and weget a higher accuracy of the approximation [16].The question remains if the Chebyshev polynomials are a good choice,since the optimumreduction (by a factor of k) could be far away from realisticresults. In �g. 6 we see that the polynomials are well suited for the examplestructural mechanics 2. The optimum and the values measured are very closeto each other. The other examples show similar results.5.3 Performance ResultsThe speedup of CG is usually determined by the matrix-vector productspeedup. However, the CG speedup is lower than the matrix-vector productspeedup because of the badly scalable dot products.The execution time for a dot product is shown for the largest examplein �g. 7. We see that for large numbers of processors the communication11

Figure 6: Iterations for di�erent degrees for structural mechanics 2time dominates the time for the dot product and so the time increases ifwe increase the number of processors. When many processors are used theoverhead of the global synchronization increases; the speedup of the operationdecreases markedly. If polynomial preconditioning is used less dot productsand more matrix-vector products are performed. Thus the CG speedup iscloser to the matrix-vector product speedup. Hence increasing the degree ofthe polynomial increases the speedup. The limiting speedup is the matrix-vector product speedup. However, the speedup | the ratio of the executiontimes on one and p processors for a certain degree | is not a criterion forthe best degree on a �xed number of processors. The criterion is a minimalexecution time for a certain degree. With increasing number of processorshigher degrees may result in shorter execution times than smaller degrees ofthe polynomial.In the following, we demonstrate the principal behaviour of polynomialpreconditioning using the (small) example structural mechanics 1. The se-quential times in seconds for various degrees are given in tab. 2. We see forthis matrix that preconditioning does not improve the performance in thesequential case, but time increases only slightly.The scalability properties for di�erent degrees are displayed in tab. 3.For various numbers of processors, the speedups are shown dependent on the12

Figure 7: Speedup for one dot product of structural mechanics 3No preconditioning Degree k=3 Degree k=514.6 15.7 16.6Table 2: Sequential execution times in secondsdegree of the polynomial. In the bottom line, the (limiting) speedup of thematrix-vector product is given.We see that the gap between matrix-vector product speedup and thespeedup of the CG method with no preconditioning increases if the number ofprocessors increases. By using polynomial preconditioning this gap becomesmarkedly smaller. Tab. 4 shows the corresponding execution times. On 16and 32 processors, preconditioning already results in shorter execution times.The behaviour of larger examples is shown in �g. 8, 9 and 10 for a �xeddegree. With polynomial preconditioning the gap between the speedup ofthe matrix-vector product and the CG speedup becomes markedly smaller.Since only speedups are plotted, the best execution times depend on thesequential times.For structural mechanics 2, this time is 610 sec. without and 576 sec. withpreconditioning. Here the preconditioned CG already is the better method inthe sequential case. The example crash test has a sequential execution timeof 9366 sec. without and 9992 sec. with preconditioning. The third example13

Speedup: proc. vs. degree 1 2 4 8 16 32No preconditioning 1.0 1.9 3.4 5.7 8.0 9.6k=3 1.0 1.9 3.4 6.0 8.7 11.1k=5 1.0 1.9 3.4 6.1 9.0 11.8Matrix-vector product 1.0 1.9 3.5 6.8 9.6 13.2Table 3: Speedup for various degreesExecution times 2 4 8 16 32No preconditioning 7.8 4.33 2.55 1.83 1.53k=3 8.3 4.65 2.63 1.80 1.42k=5 8.8 4.87 2.71 1.85 1.41Table 4: Execution times for various degreeshas about 4 millions of nonzeros. Because of the storage requirement, asequential run is not performed. We need at least 8 processors to store thedistributed matrix. The time using 8 processors is 117 sec. without and141.2 sec. with preconditioning. In this case, the time for the preconditionedmethod is increased by 20% compared with the basic CG.In �g. 11, the relative time reduction of the preconditioned method versusthe basic method on one and 128 processors is shown for the three examples.On 128 processors the preconditioned method is the faster method for allexamples. This demonstrate the advantages of the preconditioner for mas-sively parallel machines. The execution times on 128 processors are given intab. 5.Execution times Struct. mech. 2 Struct. mech. 3 Crash test128 proc. in sec.No preconditioning 16.7 12.1 162.7Polynomial preconditioning;degree in brackets 13.3 (5) 11.7 (3) 136.9 (9)Table 5: Execution times for 128 processors with and without preconditioning14

Figure 8: Speedup for structural mechanics 2

Figure 9: Speedup for structural mechanics 315

Figure 10: Speedup for crash test

Figure 11: Relative time reduction of the preconditioned CG versus the basicCG 16

6 ConclusionsThe method of conjugate gradients with polynomial preconditioning is anexample for the fact that the best parallel algorithm is not the parallelizedversion of the best sequential one. The best degree of the polynomial isnot �xed, but depends on several conditions, e.g., the number of processors.The performance of the preconditoned method is mainly determined by thespeedup of the matrix-vector product.We saw that increasing the degree leads to more local calculations and lessglobal communication. By varying the degree of the polynomial, the ratio ofcalculation and communication can be controlled. If the speedup of the basicmethod decreases for a �xed degree this parameter can be increased to achievea better e�ciency. Polynomial preconditioning increases the scalability of theCG method. High degrees of the polynomial result in speedups very close tothe optimum, the speedup of the matrix-vector product.Further advantages of polynomial preconditioning are an increased sta-bility and a higher reachable accuracy of the solution compared with thebasic CG.In addition, polynomial preconditioning is easy to integrate into a parallelbasic CG on a distibuted memory machine.To sum up, polynomial preconditioning is very attractive for massivelyparallel machines.References[1] St. Ashby Minimax Polynomial Preconditioning for Hermitian LinearSystems, SIAM J.Matrix Anal. Appl.,12:766-789 (1991)[2] C. Aykanat, F. �Ozg�uner, D.S. Scott Vectorization and parallelization ofthe conjugate gradient algorithm on hypercube-connected vector proces-sors, Microprocessing and Microprogramming, 29:67{82 (1990)[3] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra,V. Eijkhout, R. Pozo, C. Romine, H. van der Vorst Templates for theSolution of Linear Systems, SIAM, Philadelphia (1993)[4] A. Basermann Datenverteilungs- und Kommunikationsmodelle f�urparallele CG-Verfahren zur L�osung von Gleichungssystemen mitd�unnbesetzter Koe�zientenmatrix aus FE-Anwendungen , AachenerInformatik-Berichte Nr.93-7, Graduiertenkolleg Informatik und Technik,Fachgruppe Informatik der RWTH Aachen (1993)[5] A. Basermann Conjugate Gradients parallelized on the Hypercube, Int.Journal of Modern Physics C, Vol.4, No. 6:1295-1306 (1993)17

[6] A. Basermann Data Distribution and Communication Schemes for Solv-ing Sparse Systems of Linear Equations from FE Applications by ParallelCG Methods, Informatik Berichte TU Clausthal, Institut f�ur Informatik,Proceedings of the Workshop on Parallel Processing in Lessach, Austria(1993)[7] W. Bunse, A. Bunse-Gerstner Numerische Lineare Algebra, Teubner(1988)[8] P. Deu
hard, A. Hohmann Numerische Mathematik , de Gruyter (1991)[9] I.S. Du� User's Guide for the Harwell-Boeing Sparse Matrix Collection,Release I, Technical Report TR/PA/92/86, CERFACS, Toulouse Cedex(1992)[10] G.H. Golub, Ch.F. van Loan Matrix Computations, 2. Au
age, JohnHopkins University Press (1989)[11] M.R. Hestenes, E. Stiefel Methods of conjugate gradients for solvinglinear systems, Journal of Research of the National Bureau of Standards,49:409-436 (1952)[12] J. M. Ortega Introduction to parallel and vector solution of linear sys-tems, Plenum Press New York, London (1988)[13] G. Pini, G. Gambolati Is a simple diagonal scaling the best precon-ditioner for conjugate gradients on supercomputers? , Adv. Water Re-sources, 13:147-153 (1990)[14] T.J. Rivlin The Chebyshev Polynomials, John Wiley (1974)[15] H. Rutishauser Theory of gradient methods, Mitteilungen aus dem In-stitut f�ur angewandte Mathematik, 8:24-49 (1959)[16] Ch. Scheltho� Vergleich von parallelen Verfahren zur Vorkonditio-nierung f�ur die Methode der konjugierten Gradienten, Berichte desForschungzentrums J�ulich Nr. 2913 (1994)[17] Y. Saad Practical Use of Polynomial Preconditioning for the ConjugateGradient Method , SIAM J. Sci. Stat. Comput., Vol.6, 4:865-881 (1985)
18

