000200836 001__ 200836
000200836 005__ 20240610121200.0
000200836 0247_ $$2doi$$a10.1039/C5TB00644A
000200836 0247_ $$2ISSN$$a2050-750X
000200836 0247_ $$2ISSN$$a2050-7518
000200836 0247_ $$2Handle$$a2128/8890
000200836 0247_ $$2WOS$$aWOS:000355737600004
000200836 037__ $$aFZJ-2015-03216
000200836 041__ $$aEnglish
000200836 082__ $$a540
000200836 1001_ $$0P:(DE-HGF)0$$aRistig, S.$$b0
000200836 245__ $$aNanostructure of wet-chemically prepared, polymer-stabilized silver–gold nanoalloys (6 nm) over the entire composition range
000200836 260__ $$aLondon {[u.a.]$$bRSC$$c2015
000200836 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435330231_21658
000200836 3367_ $$2DataCite$$aOutput Types/Journal article
000200836 3367_ $$00$$2EndNote$$aJournal Article
000200836 3367_ $$2BibTeX$$aARTICLE
000200836 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000200836 3367_ $$2DRIVER$$aarticle
000200836 520__ $$aBimetallic silver–gold nanoparticles were prepared by co-reduction using citrate and tannic acid in aqueous solution and colloidally stabilized with poly(N-vinylpyrrolidone) (PVP). The full composition range of silver : gold from 0 : 100 to 100 : 0 (n : n) was prepared with steps of 10 mol%. The nanoparticles were spherical, monodispersed, and had a diameter of [similar]6 nm, except for Ag : Au 90 : 10 nanoparticles and pure Ag nanoparticles which were slightly larger. The size of the nanoalloys was determined by differential centrifugal sedimentation (DCS) and transmission electron microscopy (TEM). By means of X-ray powder diffraction (XRD) together with Rietveld refinement, precise lattice parameters, crystallite size and microstrain were determined. Scanning transmission electron microscopy (STEM) combined with energy-dispersive X-ray spectroscopy (EDX) and electron energy loss spectroscopy (EELS) showed that the particles consisted of a gold-rich core and a silver-rich shell. XRD and DCS indicated that the nanoparticles were not twinned, except for pure Ag and Ag : Au 90 : 10, although different domains were visible in the TEM. A remarkable negative deviation from Vegard's linear rule of alloy mixtures was observed (isotropic contraction of the cubic unit cell with a minimum at a 50 : 50 composition). This effect was also found for Ag:Au bulk alloys, but it was much more pronounced for the nanoalloys. Notably, it was much less pronounced for pure silver and gold nanoparticles. The microstrain was increased along with the contraction of the unit cell with a broad maximum at a 50 : 50 composition. The synthesis is based on aqueous solvents and can be easily scaled up to a yield of several mg of a well dispersed nanoalloy with application potential due to its tuneable antibacterial action (silver) and its optical properties for bioimaging.
000200836 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000200836 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000200836 7001_ $$0P:(DE-HGF)0$$aPrymak, O.$$b1
000200836 7001_ $$0P:(DE-HGF)0$$aLoza, K.$$b2
000200836 7001_ $$0P:(DE-Juel1)166087$$aGocyla, M.$$b3$$ufzj
000200836 7001_ $$0P:(DE-HGF)0$$aMeyer-Zaika, W.$$b4
000200836 7001_ $$0P:(DE-Juel1)130695$$aHeggen, M.$$b5$$ufzj
000200836 7001_ $$0P:(DE-HGF)0$$aRaabe, D.$$b6
000200836 7001_ $$0P:(DE-HGF)0$$aEpple, M.$$b7$$eCorresponding Author
000200836 773__ $$0PERI:(DE-600)2702241-9$$a10.1039/C5TB00644A$$gVol. 3, no. 23, p. 4654 - 4662$$n23$$p4654 - 4662$$tJournal of materials chemistry / B$$v3$$x2050-7518$$y2015
000200836 8564_ $$uhttps://juser.fz-juelich.de/record/200836/files/c5tb00644a.pdf$$yOpenAccess
000200836 8564_ $$uhttps://juser.fz-juelich.de/record/200836/files/c5tb00644a.gif?subformat=icon$$xicon$$yOpenAccess
000200836 8564_ $$uhttps://juser.fz-juelich.de/record/200836/files/c5tb00644a.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000200836 8564_ $$uhttps://juser.fz-juelich.de/record/200836/files/c5tb00644a.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000200836 8564_ $$uhttps://juser.fz-juelich.de/record/200836/files/c5tb00644a.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000200836 8564_ $$uhttps://juser.fz-juelich.de/record/200836/files/c5tb00644a.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000200836 909CO $$ooai:juser.fz-juelich.de:200836$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000200836 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000200836 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000200836 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000200836 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000200836 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000200836 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000200836 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000200836 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000200836 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000200836 9141_ $$y2015
000200836 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166087$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000200836 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000200836 9130_ $$0G:(DE-HGF)POF2-42G41$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen für zukünftige Informationstechnologien$$vPeter Grünberg-Centre (PG-C)$$x0
000200836 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000200836 920__ $$lyes
000200836 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000200836 9801_ $$aFullTexts
000200836 980__ $$ajournal
000200836 980__ $$aVDB
000200836 980__ $$aFullTexts
000200836 980__ $$aUNRESTRICTED
000200836 980__ $$aI:(DE-Juel1)PGI-5-20110106
000200836 981__ $$aI:(DE-Juel1)ER-C-1-20170209