000200838 001__ 200838
000200838 005__ 20240610121007.0
000200838 0247_ $$2doi$$a10.1021/acs.jpcc.5b02947
000200838 0247_ $$2ISSN$$a1932-7447
000200838 0247_ $$2ISSN$$a1932-7455
000200838 0247_ $$2Handle$$a2128/8891
000200838 0247_ $$2WOS$$aWOS:000355495600053
000200838 0247_ $$2altmetric$$aaltmetric:3968286
000200838 0247_ $$2pmid$$apmid:26045733
000200838 037__ $$aFZJ-2015-03218
000200838 041__ $$aEnglish
000200838 082__ $$a540
000200838 1001_ $$0P:(DE-HGF)0$$aThalinger, Ramona$$b0
000200838 245__ $$aWater-Gas Shift and Methane Reactivity on Reducible Perovskite-Type Oxides
000200838 260__ $$aWashington, DC$$bSoc.$$c2015
000200838 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435330473_21656
000200838 3367_ $$2DataCite$$aOutput Types/Journal article
000200838 3367_ $$00$$2EndNote$$aJournal Article
000200838 3367_ $$2BibTeX$$aARTICLE
000200838 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000200838 3367_ $$2DRIVER$$aarticle
000200838 520__ $$aComparative (electro)catalytic, structural, and spectroscopic studies in hydrogen electro-oxidation, the (inverse) water-gas shift reaction, and methane conversion on two representative mixed ionic–electronic conducting perovskite-type materials La0.6Sr0.4FeO3−δ (LSF) and SrTi0.7Fe0.3O3−δ (STF) were performed with the aim of eventually correlating (electro)catalytic activity and associated structural changes and to highlight intrinsic reactivity characteristics as a function of the reduction state. Starting from a strongly prereduced (vacancy-rich) initial state, only (inverse) water-gas shift activity has been observed on both materials beyond ca. 450 °C but no catalytic methane reforming or methane decomposition reactivity up to 600 °C. In contrast, when starting from the fully oxidized state, total methane oxidation to CO2 was observed on both materials. The catalytic performance of both perovskite-type oxides is thus strongly dependent on the degree/depth of reduction, on the associated reactivity of the remaining lattice oxygen, and on the reduction-induced oxygen vacancies. The latter are clearly more reactive toward water on LSF, and this higher reactivity is linked to the superior electrocatalytic performance of LSF in hydrogen oxidation. Combined electron microscopy, X-ray diffraction, and Raman measurements in turn also revealed altered surface and bulk structures and reactivities.
000200838 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000200838 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000200838 7001_ $$0P:(DE-HGF)0$$aOpitz, Alexander K.$$b1
000200838 7001_ $$0P:(DE-HGF)0$$aKogler, Sandra$$b2
000200838 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b3$$ufzj
000200838 7001_ $$0P:(DE-Juel1)145671$$aStroppa, Daniel$$b4
000200838 7001_ $$0P:(DE-HGF)0$$aSchmidmair, Daniela$$b5
000200838 7001_ $$0P:(DE-HGF)0$$aTappert, Ralf$$b6
000200838 7001_ $$0P:(DE-HGF)0$$aFleig, Jürgen$$b7
000200838 7001_ $$0P:(DE-HGF)0$$aKlötzer, Bernhard$$b8
000200838 7001_ $$0P:(DE-HGF)0$$aPenner, Simon$$b9$$eCorresponding Author
000200838 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/acs.jpcc.5b02947$$gVol. 119, no. 21, p. 11739 - 11753$$n21$$p11739 - 11753$$tThe @journal of physical chemistry <Washington, DC> / C$$v119$$x1932-7455$$y2015
000200838 8564_ $$uhttps://juser.fz-juelich.de/record/200838/files/acs.jpcc.5b02947-1.pdf$$yOpenAccess
000200838 8564_ $$uhttps://juser.fz-juelich.de/record/200838/files/acs.jpcc.5b02947-1.gif?subformat=icon$$xicon$$yOpenAccess
000200838 8564_ $$uhttps://juser.fz-juelich.de/record/200838/files/acs.jpcc.5b02947-1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000200838 8564_ $$uhttps://juser.fz-juelich.de/record/200838/files/acs.jpcc.5b02947-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000200838 8564_ $$uhttps://juser.fz-juelich.de/record/200838/files/acs.jpcc.5b02947-1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000200838 8564_ $$uhttps://juser.fz-juelich.de/record/200838/files/acs.jpcc.5b02947-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000200838 909CO $$ooai:juser.fz-juelich.de:200838$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000200838 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000200838 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000200838 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000200838 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000200838 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000200838 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000200838 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000200838 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000200838 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000200838 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000200838 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000200838 9141_ $$y2015
000200838 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000200838 9130_ $$0G:(DE-HGF)POF2-42G41$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen für zukünftige Informationstechnologien$$vPeter Grünberg-Centre (PG-C)$$x0
000200838 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000200838 920__ $$lyes
000200838 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000200838 9801_ $$aFullTexts
000200838 980__ $$ajournal
000200838 980__ $$aVDB
000200838 980__ $$aFullTexts
000200838 980__ $$aUNRESTRICTED
000200838 980__ $$aI:(DE-Juel1)PGI-5-20110106
000200838 981__ $$aI:(DE-Juel1)ER-C-1-20170209