000200847 001__ 200847
000200847 005__ 20240711085700.0
000200847 020__ $$a978-3-95806-044-9
000200847 0247_ $$2Handle$$a2128/8708
000200847 0247_ $$a1866-1793
000200847 037__ $$aFZJ-2015-03226
000200847 041__ $$aGerman
000200847 1001_ $$0P:(DE-Juel1)144671$$aNiehoff, Patrick$$b0$$eCorresponding Author$$gmale$$ufzj
000200847 245__ $$aEntwicklung planarer Ba$_{0,5}$Sr$_{0,5}$Co$_{0,8}$Fe$_{0,2}$O$_{3-δ}$ - Membranmodule zur Sauerstoffabtrennung und Analyse ihres Transportverhaltens$$f - 2015
000200847 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2015
000200847 300__ $$aVIII, 134 S.
000200847 3367_ $$2DataCite$$aOutput Types/Dissertation
000200847 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000200847 3367_ $$2ORCID$$aDISSERTATION
000200847 3367_ $$2BibTeX$$aPHDTHESIS
000200847 3367_ $$02$$2EndNote$$aThesis
000200847 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1599125494_1666
000200847 3367_ $$2DRIVER$$adoctoralThesis
000200847 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v256
000200847 502__ $$aDissertation, Ruhr-Universität Bochum, 2015$$bDissertation$$cRuhr-Universität Bochum$$d2015
000200847 520__ $$aOxygen transport membranes (OTMs) represent a promising alternative for the extraction of oxygen compared to energy intensive processes such as the cryogenic air separation. Especially ceramic, mixed ionic-electronic conducting membranes (MIECs) are of current interest. Due to their ability to transport oxygen via vacancies in the crystal lattice in case of sufficient high temperature and partial pressure gradients, such membranes can theoretically achieve a selectivity of 100% assuming the absence of any leakages. With respect to membrane material, mostly perovskites are used, showing high ionic and electronic conductance. In this context, the perovskite with the highest oxygen permeability is Ba$_{0,5}$Sr$_{0,5}$Co$_{0,8}$Fe$_{0,2}$O$_{3-\delta}$ (BSCF), which is also used in this work. Regarding the technical implementation, different design and operational concepts exist, whereas the respective oxygen transport is governed by a complex set of different mechanisms depending on each individual membrane system’s architecture. One part of this work addresses the modeling of the oxygen transport through a supported membrane. For this purpose, different approaches for individual transport mechanisms such as solid state diffusion, surface exchange, and transport in the support and gas phase are combined to one comprehensive model. With regard to the surface exchange, a correction factor is introduced, which takes into account the realistic topography of the membrane surfaces. This approach was verified by permeation measurements of supported samples with varying membrane layer thicknesses (8 - 400 $\mu$m), showing a good agreement between model and experiment. Characteristic values (porosity, tortuosity, spec. surface area) necessary for the modeling were determined using x-ray computed tomography. Overall the complete model allows the description of experimental data with a deviation of only 7%. Another focal point of this work is the development and testing of a complete ceramic membrane module. The manufacturing of planar compounds (20 mm diameter) consisting of membrane- (thickness 25 $\mu$m) and support-layers (thickness 1.4 mm) was done by sequential tape casting and lamination. Also, the adaption of the sintering program allows the fabrication of samples with a surface area of 110 x 110 cm$^{2}$, thus confirming the scalability of this manufacturing process. The compound’s outer surface is sealed by applying a ceramic layer. For this purpose, a BSCF-paste was developed and optimized with regard to a maximum green density, resulting in a gastight, crack-free layer with low porosity (ca. 5%). A gastight connection between BSCF-tube and compound was successfully achieved by garnishing and subsequent sintering under load. A tape-cast BSCF-foil (green thickness ca. 60 $\mu$m) is used as joining material, yielding a high mechanical stability and gas-tightness of the established connection. The membrane-module’s oxygen permeation was measured in 3-end mode undervarying conditions and is compared to reference samples. In this context, the results of the module, the reference samples and the developed transport model are consistent to each other. The viscous gas transport within the support layer was identified as the limiting factor. Thus future research and development needs to focus on the optimization of the support’s microstructure.
000200847 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000200847 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000200847 650_7 $$0V:(DE-588b)4012494-0$$2GND$$aDissertation$$xDiss.
000200847 773__ $$y2015
000200847 8564_ $$uhttps://juser.fz-juelich.de/record/200847/files/Energie_Umwelt_256.pdf$$yOpenAccess
000200847 8564_ $$uhttps://juser.fz-juelich.de/record/200847/files/Energie_Umwelt_256.gif?subformat=icon$$xicon$$yOpenAccess
000200847 8564_ $$uhttps://juser.fz-juelich.de/record/200847/files/Energie_Umwelt_256.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000200847 8564_ $$uhttps://juser.fz-juelich.de/record/200847/files/Energie_Umwelt_256.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000200847 8564_ $$uhttps://juser.fz-juelich.de/record/200847/files/Energie_Umwelt_256.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000200847 8564_ $$uhttps://juser.fz-juelich.de/record/200847/files/Energie_Umwelt_256.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000200847 909CO $$ooai:juser.fz-juelich.de:200847$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000200847 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144671$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000200847 9130_ $$0G:(DE-HGF)POF2-122$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vPower Plants$$x0
000200847 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000200847 9141_ $$y2015
000200847 915__ $$0StatID:(DE-HGF)0510$$aOpenAccess
000200847 920__ $$lyes
000200847 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000200847 9801_ $$aFullTexts
000200847 980__ $$aphd
000200847 980__ $$aVDB
000200847 980__ $$abook
000200847 980__ $$aI:(DE-Juel1)IEK-1-20101013
000200847 980__ $$aUNRESTRICTED
000200847 981__ $$aI:(DE-Juel1)IMD-2-20101013