000200859 001__ 200859
000200859 005__ 20240610115527.0
000200859 0247_ $$2doi$$a10.1038/srep09586
000200859 0247_ $$2Handle$$a2128/8635
000200859 0247_ $$2WOS$$aWOS:000355390200001
000200859 0247_ $$2altmetric$$aaltmetric:4042279
000200859 0247_ $$2pmid$$apmid:25993019
000200859 037__ $$aFZJ-2015-03232
000200859 082__ $$a000
000200859 1001_ $$0P:(DE-Juel1)156526$$aHu, Jinglei$$b0$$ufzj
000200859 245__ $$aPhysical Sensing of Surface Properties by Microswimmers - Directing Bacterial Motion via Wall Slip
000200859 260__ $$aLondon$$bNature Publishing Group$$c2015
000200859 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1432275297_7296
000200859 3367_ $$2DataCite$$aOutput Types/Journal article
000200859 3367_ $$00$$2EndNote$$aJournal Article
000200859 3367_ $$2BibTeX$$aARTICLE
000200859 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000200859 3367_ $$2DRIVER$$aarticle
000200859 520__ $$aBacteria such as Escherichia coli swim along circular trajectories adjacent to surfaces. Thereby, the orientation (clockwise, counterclockwise) and the curvature depend on the surface properties. We employ mesoscale hydrodynamic simulations of a mechano-elastic model of E. coli, with a spherocylindrical body propelled by a bundle of rotating helical flagella, to study quantitatively the curvature of the appearing circular trajectories. We demonstrate that the cell is sensitive to nanoscale changes in the surface slip length. The results are employed to propose a novel approach to directing bacterial motion on striped surfaces with different slip lengths, which implies a transformation of the circular motion into a snaking motion along the stripe boundaries. The feasibility of this approach is demonstrated by a simulation of active Brownian rods, which also reveals a dependence of directional motion on the stripe width.
000200859 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000200859 7001_ $$0P:(DE-Juel1)131045$$aWysocki, Adam$$b1$$ufzj
000200859 7001_ $$0P:(DE-Juel1)131039$$aWinkler, Roland G.$$b2$$ufzj
000200859 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b3$$eCorresponding Author$$ufzj
000200859 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/srep09586$$p9586$$tScientific reports$$v5$$x2045-2322$$y2015
000200859 8564_ $$uhttps://juser.fz-juelich.de/record/200859/files/srep09586.pdf$$yOpenAccess
000200859 8564_ $$uhttps://juser.fz-juelich.de/record/200859/files/srep09586.gif?subformat=icon$$xicon$$yOpenAccess
000200859 8564_ $$uhttps://juser.fz-juelich.de/record/200859/files/srep09586.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000200859 8564_ $$uhttps://juser.fz-juelich.de/record/200859/files/srep09586.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000200859 8564_ $$uhttps://juser.fz-juelich.de/record/200859/files/srep09586.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000200859 8564_ $$uhttps://juser.fz-juelich.de/record/200859/files/srep09586.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000200859 8564_ $$uhttps://juser.fz-juelich.de/record/200859/files/srep09586.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000200859 8767_ $$92015-03-23$$d2015-04-09$$eAPC$$jZahlung erfolgt$$pSREP-14-12964A
000200859 909CO $$ooai:juser.fz-juelich.de:200859$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000200859 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156526$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000200859 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131045$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000200859 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131039$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000200859 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000200859 9130_ $$0G:(DE-HGF)POF2-451$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$vSoft Matter Composites$$x0
000200859 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000200859 9141_ $$y2015
000200859 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000200859 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000200859 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000200859 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000200859 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000200859 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000200859 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000200859 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000200859 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000200859 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000200859 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000200859 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000200859 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik$$x0
000200859 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik$$x1
000200859 9801_ $$aFullTexts
000200859 980__ $$ajournal
000200859 980__ $$aVDB
000200859 980__ $$aFullTexts
000200859 980__ $$aUNRESTRICTED
000200859 980__ $$aI:(DE-Juel1)IAS-2-20090406
000200859 980__ $$aI:(DE-Juel1)ICS-2-20110106
000200859 980__ $$aAPC
000200859 981__ $$aI:(DE-Juel1)IBI-5-20200312
000200859 981__ $$aI:(DE-Juel1)IAS-2-20090406
000200859 981__ $$aI:(DE-Juel1)ICS-2-20110106