Home > Publications database > Physical Sensing of Surface Properties by Microswimmers - Directing Bacterial Motion via Wall Slip > print |
001 | 200859 | ||
005 | 20240610115527.0 | ||
024 | 7 | _ | |a 10.1038/srep09586 |2 doi |
024 | 7 | _ | |a 2128/8635 |2 Handle |
024 | 7 | _ | |a WOS:000355390200001 |2 WOS |
024 | 7 | _ | |a altmetric:4042279 |2 altmetric |
024 | 7 | _ | |a pmid:25993019 |2 pmid |
037 | _ | _ | |a FZJ-2015-03232 |
082 | _ | _ | |a 000 |
100 | 1 | _ | |a Hu, Jinglei |0 P:(DE-Juel1)156526 |b 0 |u fzj |
245 | _ | _ | |a Physical Sensing of Surface Properties by Microswimmers - Directing Bacterial Motion via Wall Slip |
260 | _ | _ | |a London |c 2015 |b Nature Publishing Group |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1432275297_7296 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
520 | _ | _ | |a Bacteria such as Escherichia coli swim along circular trajectories adjacent to surfaces. Thereby, the orientation (clockwise, counterclockwise) and the curvature depend on the surface properties. We employ mesoscale hydrodynamic simulations of a mechano-elastic model of E. coli, with a spherocylindrical body propelled by a bundle of rotating helical flagella, to study quantitatively the curvature of the appearing circular trajectories. We demonstrate that the cell is sensitive to nanoscale changes in the surface slip length. The results are employed to propose a novel approach to directing bacterial motion on striped surfaces with different slip lengths, which implies a transformation of the circular motion into a snaking motion along the stripe boundaries. The feasibility of this approach is demonstrated by a simulation of active Brownian rods, which also reveals a dependence of directional motion on the stripe width. |
536 | _ | _ | |a 553 - Physical Basis of Diseases (POF3-553) |0 G:(DE-HGF)POF3-553 |c POF3-553 |x 0 |f POF III |
700 | 1 | _ | |a Wysocki, Adam |0 P:(DE-Juel1)131045 |b 1 |u fzj |
700 | 1 | _ | |a Winkler, Roland G. |0 P:(DE-Juel1)131039 |b 2 |u fzj |
700 | 1 | _ | |a Gompper, Gerhard |0 P:(DE-Juel1)130665 |b 3 |e Corresponding Author |u fzj |
773 | _ | _ | |a 10.1038/srep09586 |0 PERI:(DE-600)2615211-3 |p 9586 |t Scientific reports |v 5 |y 2015 |x 2045-2322 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/200859/files/srep09586.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/200859/files/srep09586.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/200859/files/srep09586.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/200859/files/srep09586.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/200859/files/srep09586.jpg?subformat=icon-640 |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/200859/files/srep09586.pdf?subformat=pdfa |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/200859/files/srep09586.jpg?subformat=icon-144 |x icon-144 |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:200859 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)156526 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)131045 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)131039 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)130665 |
913 | 0 | _ | |a DE-HGF |b Schlüsseltechnologien |l BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung |1 G:(DE-HGF)POF2-450 |0 G:(DE-HGF)POF2-451 |2 G:(DE-HGF)POF2-400 |v Soft Matter Composites |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-553 |2 G:(DE-HGF)POF3-500 |v Physical Basis of Diseases |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2015 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-2-20090406 |k IAS-2 |l Theorie der Weichen Materie und Biophysik |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-2-20110106 |k ICS-2 |l Theorie der Weichen Materie und Biophysik |x 1 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a FullTexts |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-2-20090406 |
980 | _ | _ | |a I:(DE-Juel1)ICS-2-20110106 |
980 | _ | _ | |a APC |
981 | _ | _ | |a I:(DE-Juel1)IBI-5-20200312 |
981 | _ | _ | |a I:(DE-Juel1)IAS-2-20090406 |
981 | _ | _ | |a I:(DE-Juel1)ICS-2-20110106 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|