000200860 001__ 200860
000200860 005__ 20240708133712.0
000200860 037__ $$aFZJ-2015-03233
000200860 041__ $$aEnglish
000200860 1001_ $$0P:(DE-Juel1)162140$$aRichter, Alexei$$b0$$eCorresponding Author
000200860 1112_ $$aThe 2015 Spring Conference of the European Materials Research Society$$cLille$$d2015-05-11 - 2015-05-15$$gE-MRS Spring Meeting 2015$$wFrance
000200860 245__ $$aNano-Composite Microstructure Model for the Classification of Hydrogenated Nanocrystalline Silicon Oxide Thin-Films
000200860 260__ $$c2015
000200860 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1436865005_20870$$xOther
000200860 3367_ $$033$$2EndNote$$aConference Paper
000200860 3367_ $$2DataCite$$aOther
000200860 3367_ $$2ORCID$$aLECTURE_SPEECH
000200860 3367_ $$2DRIVER$$aconferenceObject
000200860 3367_ $$2BibTeX$$aINPROCEEDINGS
000200860 520__ $$aA straightforward approach to increase the solar energy conversion efficiency in solar cells is to reduce their optical loss while maintaining the electrical performance. For example, nanocrystalline hydrogenated silicon oxide (nc-SiOx:H) can be implemented in silicon based solar cells as a wide optical band gap material to diminish parasitic optical losses. At the same time, an excellent electrical conductivity can be achieved due to its unique microstructure. In the present work, we introduce a microstructure model that consistently correlates the nc-SiOx:H microstructure to the deposition conditions during Plasma Enhanced Chemical Vapour Deposition (PECVD) as well as to the optoelectronic properties of nc-SiOx:H thin films. We successfully validated the model by means of a large quantity of systematically and individually optimized n- and p-doped nc-SiOx:H films deposited at very high frequency (VHF) and radio frequency (RF). In particular, this model shows that the improved optoelectronic performance of nc-SiOx:H films deposited at VHF as compared to RF might be a consequence of an improved phase separation between the conductive nanocrystalline silicon and the oxygen rich matrix at VHF, which in turn is likely due to a higher hydrogen radical density in the plasma as compared to RF. In addition, we present our latest results on silicon thin-film and silicon heterojunction solar cells using our newly developed VHF nc-SiOx:H with superior optoelectronic properties.
000200860 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000200860 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000200860 7001_ $$0P:(DE-Juel1)159406$$aZhao, Lei$$b1
000200860 7001_ $$0P:(DE-Juel1)130238$$aFinger, Friedhelm$$b2
000200860 7001_ $$0P:(DE-Juel1)130233$$aDing, Kaining$$b3
000200860 773__ $$y2015
000200860 909CO $$ooai:juser.fz-juelich.de:200860$$pVDB
000200860 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162140$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000200860 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130238$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000200860 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130233$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000200860 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000200860 9141_ $$y2015
000200860 920__ $$lyes
000200860 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000200860 980__ $$aconf
000200860 980__ $$aVDB
000200860 980__ $$aI:(DE-Juel1)IEK-5-20101013
000200860 980__ $$aUNRESTRICTED
000200860 981__ $$aI:(DE-Juel1)IMD-3-20101013