001     200874
005     20210129215550.0
024 7 _ |a 10.5194/bg-10-929-2013
|2 doi
024 7 _ |a 1726-4170
|2 ISSN
024 7 _ |a 1726-4189
|2 ISSN
024 7 _ |a 2128/8637
|2 Handle
024 7 _ |a WOS:000315093000018
|2 WOS
024 7 _ |a altmetric:5314227
|2 altmetric
037 _ _ |a FZJ-2015-03242
082 _ _ |a 570
100 1 _ |a Charman, D. J.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Climate-related changes in peatland carbon accumulation during the last millennium
260 _ _ |a Katlenburg-Lindau [u.a.]
|c 2013
|b Copernicus
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1432640851_12664
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Peatlands are a major terrestrial carbon store and a persistent natural carbon sink during the Holocene, but there is considerable uncertainty over the fate of peatland carbon in a changing climate. It is generally assumed that higher temperatures will increase peat decay, causing a positive feedback to climate warming and contributing to the global positive carbon cycle feedback. Here we use a new extensive database of peat profiles across northern high latitudes to examine spatial and temporal patterns of carbon accumulation over the past millennium. Opposite to expectations, our results indicate a small negative carbon cycle feedback from past changes in the long-term accumulation rates of northern peatlands. Total carbon accumulated over the last 1000 yr is linearly related to contemporary growing season length and photosynthetically active radiation, suggesting that variability in net primary productivity is more important than decomposition in determining long-term carbon accumulation. Furthermore, northern peatland carbon sequestration rate declined over the climate transition from the Medieval Climate Anomaly (MCA) to the Little Ice Age (LIA), probably because of lower LIA temperatures combined with increased cloudiness suppressing net primary productivity. Other factors including changing moisture status, peatland distribution, fire, nitrogen deposition, permafrost thaw and methane emissions will also influence future peatland carbon cycle feedbacks, but our data suggest that the carbon sequestration rate could increase over many areas of northern peatlands in a warmer future.
536 _ _ |a 246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)
|0 G:(DE-HGF)POF2-246
|c POF2-246
|f POF II
|x 0
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Beilman, D. W.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Blaauw, M.
|0 0000-0002-5680-1515
|b 2
700 1 _ |a Booth, R. K.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Brewer, S.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Chambers, F. M.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Christen, J. A.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Gallego-Sala, A.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Harrison, S. P.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Hughes, P. D. M.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Jackson, S. T.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Korhola, A.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Mauquoy, D.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Mitchell, F. J. G.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Prentice, I. C.
|0 0000-0002-1296-6764
|b 14
700 1 _ |a van der Linden, M.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a De Vleeschouwer, F.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Yu, Z. C.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Alm, J.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Bauer, I. E.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Corish, Y. M. C.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Garneau, M.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Hohl, V.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Huang, Y.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Karofeld, E.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Le Roux, G.
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Loisel, J.
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Moschen, R.
|0 P:(DE-Juel1)129507
|b 27
|u fzj
700 1 _ |a Nichols, J. E.
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Nieminen, T. M.
|0 P:(DE-HGF)0
|b 29
700 1 _ |a MacDonald, G. M.
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Phadtare, N. R.
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Rausch, N.
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Sillasoo, Ü.
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Swindles, G. T.
|0 P:(DE-HGF)0
|b 34
700 1 _ |a Tuittila, E.-S.
|0 P:(DE-HGF)0
|b 35
700 1 _ |a Ukonmaanaho, L.
|0 P:(DE-HGF)0
|b 36
700 1 _ |a Väliranta, M.
|0 P:(DE-HGF)0
|b 37
700 1 _ |a van Bellen, S.
|0 P:(DE-HGF)0
|b 38
700 1 _ |a van Geel, B.
|0 P:(DE-HGF)0
|b 39
700 1 _ |a Vitt, D. H.
|0 P:(DE-HGF)0
|b 40
700 1 _ |a Zhao, Y.
|0 P:(DE-Juel1)141955
|b 41
773 _ _ |a 10.5194/bg-10-929-2013
|g Vol. 10, no. 2, p. 929 - 944
|0 PERI:(DE-600)2158181-2
|n 2
|p 929 - 944
|t Biogeosciences
|v 10
|y 2013
|x 1726-4189
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/200874/files/bg-10-929-2013.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/200874/files/bg-10-929-2013.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/200874/files/bg-10-929-2013.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/200874/files/bg-10-929-2013.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/200874/files/bg-10-929-2013.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/200874/files/bg-10-929-2013.pdf?subformat=pdfa
856 4 _ |u https://juser.fz-juelich.de/record/200874/files/bg-10-929-2013.jpg?subformat=icon-144
|x icon-144
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:200874
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 0000-0002-5680-1515
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 27
|6 P:(DE-Juel1)129507
913 2 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-HGF)POF2-246
|2 G:(DE-HGF)POF2-200
|v Modelling and Monitoring Terrestrial Systems: Methods and Technologies
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a FullTexts
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21