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When using Wannier functions to study the electronic structure of multiparameter Hamiltonians H (k,λ) carrying

a dependence on crystal momentum k and an additional periodic parameter λ, one usually constructs several sets

of Wannier functions for a set of values of λ. We present the concept of higher-dimensional Wannier functions

(HDWFs), which provide a minimal and accurate description of the electronic structure of multiparameter

Hamiltonians based on a single set of HDWFs. The obstacle of nonorthogonality of Bloch functions at different

λ is overcome by introducing an auxiliary real space, which is reciprocal to the parameter λ. We derive a

generalized interpolation scheme and emphasize the essential conceptual and computational simplifications

in using the formalism, for instance, in the evaluation of linear response coefficients. We further implement

the necessary machinery to construct HDWFs from ab initio within the full potential linearized augmented

plane-wave method (FLAPW). We apply our implementation to accurately interpolate the Hamiltonian of a

one-dimensional magnetic chain of Mn atoms in two important cases of λ: (i) the spin-spiral vector q and

(ii) the direction of the ferromagnetic magnetization m̂. Using the generalized interpolation of the energy, we

extract the corresponding values of magnetocrystalline anisotropy energy, Heisenberg exchange constants, and

spin stiffness, which compare very well with the values obtained from direct first principles calculations. For toy

models we demonstrate that the method of HDWFs can also be used in applications such as the virtual crystal

approximation, ferroelectric polarization, and spin torques.
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I. INTRODUCTION

Maximally localized Wannier functions (MLWFs) have be-
come a widely applied tool in electronic structure calculations
[1]. Defined as discrete Fourier transformations of Bloch states
�km with respect to crystal momentum k, the MLWFs

WRn(r) =
1

Nk

∑

km

e−ik·RU (k)
mn�km(r) (1)

are labeled by the direct lattice vector R and the orbital index
n. Unitary gauge transformations U (k) as well as the number of
k points, Nk, enter Eq. (1). These orbitals allow for an efficient
but remarkably accurate Wannier interpolation of any single-
particle operator such as the Hamiltonian H (k). The Wannier
interpolation is in particular fruitful in the calculation of linear
response coefficients such as the anomalous Hall conductivity,
and various Fermi surface properties, which require a fine k

mesh for Brillouin zone (BZ) integration [2–4].
It is sometimes necessary to consider a family H (k,λ)

of Hamiltonians, where λ is an additional parameter. In
the problem of ferroelectric polarization, for instance, the
parameter λ indicates relative displacements of the crystal
sublattices [5–7]. In magnetic systems with noncollinear
spin-spiral texture, the additional parameter λ can be identified
with the spin-spiral vector q. The related energy E(q) serves to
determine Heisenberg exchange constants [8]. Frequently, the
ferromagnetic magnetization direction m̂ plays the role of λ.
Such a situation is met in the study of the magnetocrystalline
anisotropy energy (MAE), which is the magnitude of the
variation of the energy E(m̂) with m̂. The dependencies
of crystal volume, current-induced torques [9–12], and the
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conductivity tensor on the magnetization direction provide
similar examples.

Notably, the anomalous Hall effect (AHE) can exhibit an
anisotropy with respect to m̂ [13]. For a given magnetization
direction, the corresponding value of the anomalous Hall
conductivity is obtained from Wannier interpolation in crystal
momentum k. The evaluation on a dense m̂ mesh requires
accordingly the construction of a huge amount of MLWFs—
one set of MLWFs for each m̂. Consequently, the accurate
calculation of the AHE anisotropy is a rather time-consuming
task.

The computation of such linear response quantities would
benefit in particular from an interpolation technique based on
functions, which provide efficient access to the multiparameter
Hamiltonian H (k,λ) of the system. For this purpose, the
definition of MLWFs, Eq. (1), has to be generalized. We
introduce higher-dimensional Wannier functions (HDWFs) as
Fourier transformations of states �kλm with respect to both
crystal momentum k and the additional parameter λ:

WR�n(r,ξ ) =
1

Nk

1

Nλ

∑

kλm

e−ik·Re−iλ·�U (k,λ)
mn �kλm(r,ξ ). (2)

Here, U (k,λ) denotes a unitary matrix and the new additional
index � of the HDWFs is conjugate to λ like R is conjugate
to k. Further, Nλ is the number of λ points and ξ refers to
an auxiliary space variable. In the presence of an additional
parameter, the usual Bloch states �kλm are typically not
orthogonal, i.e., 〈�kλn|�k′λ′m〉 �∝ δkk′δλλ′δnm. To overcome this
obstacle and establish the transformation (2), the introduction
of an auxiliary space ξ is crucial. The auxiliary space
is reciprocal to λ like real space is reciprocal to crystal
momentum k. Then the role of Bloch states is taken in
Eq. (2) by orthogonal states �kλm in the combined space of r

and ξ .
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Within an energy window of interest, the family H (k,λ)

of Hamiltonians can be interpolated using HDWFs. After
constructing HDWFs from a coarse (k,λ) mesh, we store the
information on the multiparameter Hamiltonian in hopping
elements Hnm(R,�) of HDWFs. Finally, we can obtain
H (k,λ) on a much denser (k,λ) mesh by an inverse Fourier
transformation of these hoppings.

Several applications where such an approach would be

very fruitful come to mind, of which we mention explicitly

the following ones: (i) the evaluation of the AHE anisotropy

would be simplified by performing a generalized Wannier

interpolation for the situation with λ = m̂; (ii) Heisenberg

exchange constants would be accessible using generalizations

of MLWFs in an interpolation of E(q) with respect to the

spin-spiral parameter λ = q; (iii) mixed Berry curvatures in

real and momentum space have been found to be quantitatively

important in materials like MnSi, where they support the

formation of nontrivial magnetic textures [14]. An accurate

interpolation of the multiparameter Hamiltonian could be

employed in the study of the contributions of mixed Berry

curvatures to the Hall effects. Thus HDWFs would prove

useful in the topological characterization of complex magnetic

structures; (iv) such functions could provide an alternative

means of calculating forces in first principles methods where

atomic displacements are described by λ; (v) eventually, the

framework could allow the treatment of alloys like FexCo1−x

or even BixSb1−x within the virtual crystal approximation

(VCA), with concentration x as parameter λ.

In this work, we present the formalism of higher-

dimensional Wannier functions (HDWFs) given by Eq. (2).

The problem of nonorthogonality of Bloch states is solved by

the introduction of an auxiliary space reciprocal to the λ space.

Based on HDWFs, we establish a generalized interpolation

scheme which provides efficient but accurate access to the

multiparameter Hamiltonian H (k,λ) for any desired value of

(k,λ). The necessary machinery for an ab initio construction

of HDWFs is implemented within the FLAPW method to treat

consistently multiparameter Hamiltonians of realistic systems.

As proof of principle, we consider the electronic structure

of a linear equidistant chain of Mn atoms as a function of

(i) the spin-spiral vector q, and (ii) as a function of the

ferromagnetic magnetization direction m̂. Using the method

of HDWFs, we achieve the generalized interpolation of the

first principles Hamiltonian family H (k,q) and H (k,m̂), which

allows for a precise determination of Heisenberg exchange

parameters, spin stiffness and magnetocrystalline anisotropy

energy. Within toy models we investigate further promising

applications of the formalism such as VCA, current-induced

torques, and ferroelectric polarization.
The paper is structured as follows. We begin with a concise

review of MLWFs and the Wannier interpolation in Sec. II.
In Sec. III, we introduce the formalism of HDWFs and set up
the interpolation technique of multiparameter Hamiltonians.
We describe the implementation for constructing HDWFs
from ab initio within the FLAPW method in Sec. IV, and
present the application of HDWFs to calculating Heisenberg
exchange constants and MAE of a Mn chain in Secs. IV and V,
respectively. In Sec. VI, we discuss applications of HDWFs for
VCA, ferroelectric polarization, and current-induced torques

based on toy models. Finally, we conclude this work with a
summary.

II. REVIEW OF MLWFs

In contrast to the oscillatory and delocalized Bloch states
�kn, Wannier functions (WFs) provide a more intuitive insight
into the nature of crystal bonding [15–18] and the underlying
physical processes due to their real-space localization. The
benefit of reformulating the electronic structure problem in
terms of WFs is widely exploited in formal developments
such as effective model Hamiltonian construction for the study
of strongly correlated systems [19–21]. Further, the centers
of WFs play a fundamental role in the modern theory of
ferroelectric polarization [5–7].

In the definition of MLWFs, Eq. (1), the unitary matrices
U (k) are chosen to maximize the real-space localization
whereby the resulting orbitals are uniquely determined. One
approach to obtain such a gauge thus lies in minimizing the
spatial extent � of the WFs:

� =
∑

n

(〈W0n|r2|W0n〉 − 〈W0n|r|W0n〉2). (3)

An algorithm for the spread minimization of WFs was
proposed first for the case of isolated groups of energy bands
[22] but soon generalized to treat entangled bands as well [23].
The corresponding WANNIER90 implementation requires as an
input two quantities [24]. First, the overlaps

M (k,b)
mn = 〈ukm|uk+b n〉 (4)

of the periodic parts ukm = e−ik·r�km of the Bloch states at
neighboring crystal momenta k and k + b have to be provided
since they determine centers and spreads of MLWFs. Second,
the projections A(k)

mn = 〈�km|gn〉 of the Bloch functions onto
localized trial orbitals gn serve as a starting point for the
iterative minimization process, which results at the end in
MLWFs.

The Wannier interpolation is performed within a certain
energy window spanned by the MLWFs [3]. For this purpose,
matrix elements of the single-particle Hamiltonian H between
such functions have to be calculated:

Hnm(R) = 〈W0n|H |WRm〉 =
1

Nk

∑

kn′

e−ik·R(U
(k)
n′n

)∗
Ekn′ U

(k)
n′m,

(5)

where Ekn′ stand for the ab initio band energies computed
on a coarse k mesh of Nk points. Importantly, MLWFs are
orthonormal such that 〈WRn|WR′m〉 = δRR′δnm, which follows
from the orthogonality of the Bloch states 〈�kn|�k′m〉 =
Nkδkk′δnm and Eq. (1). Because of the localization of MLWFs,
the matrix elements Hnm(R) decay rapidly with increasing
distance |R|. The electronic band structure can be accessed
accurately on a much finer interpolation mesh of k points
using the hopping elements, Eq. (5). By an inverse Fourier
transformation, the interpolated Hamiltonian H (k) is obtained
for every desired k point, even if this point is not contained in
the coarse mesh of Nk points used for constructing MLWFs:

H (k)
nm =

∑′

R

eik·RHnm(R). (6)
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Here, as marked with a dash, the summation is truncated keep-
ing in mind the rapid decay of the hopping elements Hnm(R).
Eventually, the interpolated Hamiltonian is diagonalized using
unitary matrices V (k):

[(V (k))†H (k) V (k)]nm = Eknδnm. (7)

Thus the Wannier interpolation grants efficient access to the
band structure Ekn for any k. Key properties necessary for this
interpolation scheme to work are orthonormality as well as
real-space localization of the MLWFs.

III. EXTENSION OF THE FORMALISM

A. Orthogonality problem

In the presence of an additional periodic variable λ, the
system under consideration is described by a family of
Hamiltonians, where each member H (λ) represents the system
at a given value of λ. If we assume that H (λ) is lattice periodic
at each λ, the eigenstates of H (λ) are Bloch states �kλn carrying
a dependence on λ:

H (λ)(r)�kλn(r) = Ekλn�kλn(r), (8)

where Ekλn are the band energies. Since the Hamiltonians H (λ)

and H (λ′) are generally independent, the eigenstates at different
values of λ are not necessarily orthogonal, i.e.,

〈�kλn|�k′λ′m〉 �∝ δkk′δλλ′δnm. (9)

Only at fixed parameter λ the orthogonality with respect to
crystal momentum is always present such that 〈�kλn|�k′λm〉 =
Nkδkk′δnm. As a consequence, discrete Fourier transformations
of these Bloch states with respect to k and λ do not lead
to orthonormal WFs. On the one hand, nonorthogonal WFs
can be defined [25] and can even be advantageous due to a
stronger real-space localization [26]. On the other hand, in
our case already the eigenstates are nonorthogonal for λ �= λ′,
leading to additional complications. In particular, when trying
to generalize Eq. (5) for the case of these nonorthogonal WFs,
we formally encounter matrix elements 〈�kλn|H |�kλ′m〉, the
handling of which is not obvious for λ �= λ′.

B. Solution to the orthogonality problem

1. Introduction of an auxiliary space

To obtain well-localized orthonormal HDWFs, we intro-
duce an auxiliary space ξ as the reciprocal of the λ space.
Instead of taking the Bloch states �kλn(r) in the construction
of HDWFs, we consider orthogonal states �kλn(r,ξ ) in the
composite space (r,ξ ). We define such states as the products
of the physical Bloch states and auxiliary orbitals ζλ(ξ ):

�kλn(r,ξ ) = �kλn(r)ζλ(ξ ). (10)

The crucial orthogonality of the product states �kλn is enforced
by choosing 〈ζλ|ζλ′〉 = Nλδλλ′ .

2. Choice of the auxiliary orbital

When constructing the auxiliary orbital, we consider a
translationally invariant potential in the auxiliary space as
schematically shown in Fig. 1. The auxiliary orbital ζλ(ξ ) is
chosen to be the lowest energy eigenstate of an according

ΞjΞj−1 Ξj+1

ā

b̄
V̄0

FIG. 1. (Color online) Scalar potential landscape (red solid line)

of the one-dimensional lattice defined as series of finite potential

wells of depth V̄0. The well width is b̄, and ā stands for the lattice

constant. A dashed line indicates the ξ axis.

lattice periodic Hamiltonian H̄ :

H̄ (ξ )ζλ(ξ ) = Ēλζλ(ξ ), (11)

where Ēλ represents the lowest energy band in λ space
associated with the Hamiltonian H̄ . The regular lattice in the
auxiliary space is modeled using a series of potential wells
of depth V̄0 as depicted in Fig. 1. Because the extension
to higher dimensions is straightforward, we only discuss
the one-dimensional case described by the single-particle
Hamiltonian

H̄ (ξ ) = −
�

2

2m

d2

dξ 2
− V̄0

∑

j

�b̄
	j

(ξ ), (12)

where m is the electron mass and � is Planck’s constant. To
simplify notation, we introduced the function

�b̄
	j

(ξ ) = �(ξ − 	j + b̄/2) − �(ξ − 	j − b̄/2), (13)

which cuts out the well region of width b̄ centered around
the position 	j with the Heaviside step function �(ξ ). Here,
the coordinate 	j = j ā is defined by the lattice constant ā

measured along the ξ axis and an integer j .
The most convenient and natural choice of the auxiliary

orbital is that of a Bloch wave:

ζλ(ξ ) = eiλ·ξρλ(ξ ), (14)

where ρλ(ξ ) is a ξ -periodic function normalized to the unit
cell in the auxiliary space: 〈ρλ|ρλ′〉 = δλλ′ . It follows that the
auxiliary orbitals are orthogonal, i.e., 〈ζλ|ζλ′〉 = Nλδλλ′ , where
the integration is performed in a supercell of Nλ unit cells in
the auxiliary space.

We can solve the Schrödinger equation to the one-
dimensional Hamiltonian (12) for ζλ numerically using a
plane-wave basis, with the potential depth V̄0 chosen to
strongly suppress the tunneling between different wells.
Alternatively, we can also arrive analytically at the expression
for the lowest energy eigenstate to Eq. (12) in the deep-well
limit V̄0 → ∞ by starting from a single-well solution:

w(ξ ) =

{

√

2
b̄

cos πξ

b̄
, if |ξ | < b̄/2

0, else
. (15)
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The auxiliary orbital is found as an inverse Fourier transfor-
mation of the Wannier-like function w with respect to the
positions 	j . In accordance with the Bloch theorem, Eq. (14),
the lattice periodic part ρλ assumes the form

ρλ(ξ ) = e−iλξ
∑

j

eiλ	j w(ξ − 	j ). (16)

Eventually, overlaps between periodic parts ρλ to different
parameter values λ and λ + τ are important ingredients for
constructing HDWFs. Such overlaps read

〈ρλ|ρλ+τ 〉 =
8π2 sin(τ b̄/2)

4π2τ b̄ − τ 3b̄3
= 1 +

τ 2b̄2

24π2
(6 − π2) + O(τ 4),

(17)

where τ plays a similar role like b in Eq. (4) and the ξ

integration is performed in one unit cell in auxiliary space.
From the above Taylor expansion, it follows that 〈ρλ|∂λρλ〉 = 0
and 〈ρλ|∂2

λρλ〉 = (6 − π2)b̄2/(12π2).

3. Product states and composite Hamiltonian

Essentially, the definition of HDWFs, Eq. (2), is based
on the products �kλn(r,ξ ) of Bloch states and the auxiliary
orbitals discussed above. Exploiting Eq. (14), we can rewrite
the product states of Eq. (10) as

�kλn(r,ξ ) = eik·reiλ·ξϕkλn(r,ξ ), (18)

where

ϕkλn(r,ξ ) = ukλn(r)ρλ(ξ ) (19)

are lattice periodic. Such product states are orthogonal also
in λ, i.e., 〈�kλn|�k′λ′m〉 = NkNλδkk′δλλ′δnm, and they are
periodic with respect to both k and λ.

The question arises to which Hamiltonian H the product
states �kλn(r,ξ ), Eq. (18), are eigenstates in the composite
space (r,ξ ). Since the eigenstates have the product shape, the
sought Hamiltonian decomposes into two additive contribu-
tions. If we denote by H̄ the single-particle Hamiltonian to
which the auxiliary orbital ζλ is an eigenstate [see Eq. (11)],
the Hamiltonian of the composite system is given by

H(r,ξ ) = H (r) + H̄ (ξ ). (20)

Here, the Hamiltonian H , which is independent of the
parameter λ, can be written in the form

H (r) =
∫

H (λ)(r)δ(λ̂ − λ) dλ, (21)

where λ̂�kλn = λ�kλn. When acting with this Hamiltonian
on a specific Bloch state �kλn, the delta function selects the
Hamiltonian H (λ) which corresponds to the specific parameter
value of the Bloch state. It thus follows that H�kλn =
Ekλn�kλn in line with Eq. (8). Therefore the product states
satisfy the Schrödinger equation

H(r,ξ )�kλn(r,ξ ) = (Ekλn + Ēλ)�kλn(r,ξ ), (22)

where Ēλ represents the energy band in λ space associated with
the auxiliary orbital ζλ.

According to Eq. (22), the eigenvalues of the composite
Hamiltonian H differ from the ab initio band energies, which

we would like to interpolate. To achieve the identity between
the two sets of eigenvalues, we study the deep-well limit for
the Hamiltonian H̄ . In this case, the energy level Ēλ becomes
independent of λ. As a consequence, Ēλ in Eq. (22) can be set
to zero, so that

H(r,ξ )�kλn(r,ξ ) = Ekλn�kλn(r,ξ ). (23)

Therefore the generalized interpolation in k and λ of the band
structure of the composite Hamiltonian H grants access to the
interpolated band structure of the physical Hamiltonian H of
interest.

C. Higher-dimensional Wannier functions (HDWFs)

1. Definition

Discrete Fourier transformations of the product states �kλm

with respect to k and λ define HDWFs in close analogy to
MLWFs. We repeat here Eq. (2) as one of the main results of
this work:

WR�n(r,ξ ) =
1

Nk

1

Nλ

∑

kλm

e−ik·Re−iλ·�U (k,λ)
mn �kλm(r,ξ ). (24)

HDWFs are labeled by an orbital index n, the direct lattice
vector R, and an additional lattice vector �. � is conjugate
to λ like the direct lattice vector R is conjugate to the
crystal momentum k. Unitary gauge transformations U (k,λ)

control the localization of HDWFs, and Nk and Nλ stand for
the number of grid points in k and λ spaces, respectively.
Due to the orthogonality of the product states �kλm, the
orbitals WR�n(r,ξ ) are orthonormal, i.e., 〈WR�n|WR′�′m〉 =
δRR′δ��′δnm.

2. Centers and spreads

A first physical interpretation of the functions WR�n defined
by Eq. (24) is provided by the expressions for the centers of
HDWFs in r and ξ . The centers of HDWFs in real space r can
be directly related to the BZ sum of the Berry connection in
crystal momentum space:

〈W00n|r|W00n〉 =
i

NkNλ

∑

kλ

〈ϕ̃kλn|∇k|ϕ̃kλn〉

=
i

NkNλ

∑

kλ

〈ũkλn|∇k|ũkλn〉, (25)

which is easily derived using the Bloch-like periodic parts
ϕ̃kλn =

∑

m U (k,λ)
mn ϕkλm and ũkλn =

∑

m U (k,λ)
mn ukλm, respec-

tively. Equation (25) is the generalization of the expression for
centers of MLWFs. To obtain the ξ centers of HDWFs, we start
from the definition Eq. (24) and write down the expectation
value of the auxiliary position operator in the basis of HDWFs:

〈W00n|ξ |W00n〉 =
i

NkNλ

∑

kλ

〈ϕ̃kλn|∇λ|ϕ̃kλn〉

=
i

NkNλ

∑

kλ

(〈ũkλn|∇λ|ũkλn〉 + 〈ρλ|∇λ|ρλ〉).

(26)

However, the second term 〈ρλ|∇λ|ρλ〉 vanishes in the deep-
well limit [see e.g. Eq. (16)]. Accordingly, the centers of
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HDWFs in the auxiliary space ξ are given by the BZ sum
of the Berry connections in λ space:

〈W00n|ξ |W00n〉 =
i

NkNλ

∑

kλ

〈ũkλn|∇λ|ũkλn〉, (27)

which are independent of the auxiliary orbitals ζλ but deter-
mined solely by the Bloch-like periodic parts.

Likewise, the expectation values for the squared position
operators r2 and ξ 2 evaluate to

〈W00n|r2|W00n〉 =
−1

NkNλ

∑

kλ

〈ϕ̃kλn|∇2
k |ϕ̃kλn〉

=
−1

NkNλ

∑

kλ

〈ũkλn|∇2
k |ũkλn〉 (28)

and

〈W00n|ξ 2|W00n〉 =
−1

NkNλ

∑

kλ

〈ϕ̃kλn|∇2
λ|ϕ̃kλn〉

=
−1

NkNλ

∑

kλ

(〈ũkλn|∇2
λ|ũkλn〉 + 〈ρλ|∇2

λ|ρλ〉).

(29)

While the ξ center is independent of the auxiliary orbital, the
expectation value of ξ 2 contains explicitly a contribution from
the integral 〈ρλ|∇2

λ|ρλ〉. Together with Eqs. (25) and (27) for
the centers, the above expressions can be used to calculate the
spread �̃ of HDWFs in the combined space of r and ξ :

�̃ =
∑

n

(〈W00n|r̃2|W00n〉 − 〈W00n|r̃|W00n〉2). (30)

To simplify notation, we introduced the generalized position
operator r̃ = (r,ξ ).

3. Maximal localization

As discussed in Sec. II, the constraint of minimal spread
� uniquely defines the MLWFs up to a global phase factor.
Similarly, the unitary matrixU (k,λ) in the definition of HDWFs,
Eq. (24), is determined from the condition that the orbitals
WR�n(r,ξ ) should exhibit a minimal spread �̃ in the space of
r and ξ . The resulting HDWFs are unique up to a global phase
factor.

Usually, the maximal localization procedure is performed in
the three-dimensional real space r . For constructing HDWFs,
we need to consider in addition the auxiliary space ξ . To
minimize the spread �̃, Eq. (30), in the composite space of r

and ξ , we thus extend the WANNIER90 program. Then, centers
of HDWFs possess additional coordinates, Eq. (27), owing to
the auxiliary space. A higher-dimensional but block-diagonal
Bravais matrix is employed to define the composite direct
lattice in (r,ξ ) space:

A =
(

A1 0
0 A2

)

, (31)

where A1 is the usual 3 × 3 Bravais matrix of the crystal and
the rank of A2 is given by the dimension of ξ . Associated with
the direct lattice is a composite reciprocal lattice in (k,λ) space
combining crystal momentum and the additional parameter.

Both k and λ are chosen to form individual Monkhorst-Pack
grids. According to the equations in Sec. III C 2, we can
exploit the same finite-difference expressions as in Ref. [22] to
evaluate the spread �̃. However, the role of the usual periodic
parts ukn(r) is now taken by their higher-dimensional analogs
ϕkλn(r,ξ ), Eq. (19). We need to set up all necessary neighbors
(k + bk,λ + bλ) of a point (k,λ) to apply the finite-difference
formulas. Here, bk and bλ connect the two reciprocal points.
In general, we choose the Bravais matrix such that only
those neighbors need to be considered where either bk = 0

or bλ = 0.
The overlaps 〈ϕkλm|ϕk+bk λ+bλ n〉 of the periodic parts at

neighboring points in the (k,λ) space serve to calculate centers
and spreads of HDWFs. As we choose the directions of k and λ

to be orthogonal in the composite reciprocal lattice, the overlap
matrix consists of the two contributions

M (k,b)
mn (λ) = 〈ϕkλm|ϕk+b λn〉 (32)

M̄ (λ,b)
mn (k) = 〈ϕkλm|ϕk λ+b n〉 (33)

depending on whether overlaps at neighboring k points or
neighboring λ points are concerned. The product shape of the
periodic parts ϕkλm, Eq. (19), allows further simplifications:

M (k,b)
mn (λ) = 〈ukλm|uk+b λn〉, (34)

M̄ (λ,b)
mn (k) = 〈ukλm|uk λ+b n〉〈ρλ|ρλ+b〉 = M(λ,b)

mn (k)〈ρλ|ρλ+b〉.
(35)

The implementation of Eq. (34) within the FLAPW method
is analogous to that of the usual overlaps, Eq. (4), which
is discussed in Ref. [27]. The evaluation of the overlaps in
Eq. (35) requires the integrals 〈ρλ|ρλ+b〉 in addition to the over-
laps M(λ,b)

mn (k) = 〈ukλm|uk λ+b n〉 between the periodic parts
of Bloch states. Details on the implementation of M(λ,b)

mn (k)
within the FLAPW method are given in the Appendices A–D
for various realizations of λ.

In addition, the projections of Bloch states onto localized
trial orbitals gn(r) are replaced by the projections

A(k,λ)
mn = 〈�kλm|pn〉 (36)

of the product states onto functions pn(r,ξ ) localized in (r,ξ )
space. Such projections are the starting point for the spread
minimization of HDWFs. Exploiting the product shape of the
states �kλm, Eq. (14), we obtain

A(k,λ)
mn = 〈�kλm|gn〉〈ζλ|h〉, (37)

with the ansatz pn(r,ξ ) = gn(r)h(ξ ). Thus the projections
onto localized trial functions factorize into the usual projec-
tions of Bloch states and the auxiliary projection 〈ζλ|h〉. In
Appendix A, the construction of the usual projections
〈�kλm|gn〉 within FLAPW is discussed.

D. Generalized Wannier interpolation

Within the energy window spanned by HDWFs, the
multiparameter Hamiltonian H (k,λ) can be interpolated in k

and λ. As a starting point for the interpolation scheme, the
matrix elements of the Hamiltonian H in the basis of HDWFs
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have to be calculated:

Hnm(R,�) = 〈W00n|H|WR�m〉

=
1

NkNλ

∑

kλn′

e−ik·Re−iλ·�(U
(k,λ)
n′n

)∗
Ekλn′ U

(k,λ)
n′m .

(38)

These generalized hoppings are rapidly decaying with distance
and, further, depend only on the distance vectors R′ − R and
�′ − �:

〈WR�n|H|WR′�′m〉 = 〈W00n|H|WR′−R �′−� m〉. (39)

The hoppings Hnm(R,�) converge quickly with the number
Nk × Nλ of mesh points. They can therefore be constructed
using a coarse Nk × Nλ mesh. By an inverse Fourier transfor-
mation, one obtains the interpolated H (k,λ) for every desired
point (k,λ), even if this point is not contained in the coarse
Nk × Nλ mesh used for the construction of the HDWFs:

H (k,λ)
nm =

∑′

R�

eik·Reiλ·�Hnm(R,�). (40)

As the HDWFs are strongly localized after minimizing their
spread, the summation can be truncated. Indicated by the
dashed symbol, only non-negligible hoppings are taken into
account. Finally, the interpolated bands Ekλn are obtained by
diagonalizing the interpolated Hamiltonian H (k,λ):

[(V (k,λ))†H (k,λ) V (k,λ)]nm = Ekλnδnm. (41)

IV. APPLICATION TO SPIN SPIRALS IN

A CHAIN OF Mn ATOMS

A. Heisenberg model and generalized Bloch theorem

As an application of the generalized Wannier interpolation
to realistic systems, we study a one-dimensional magnetic
chain of Mn atoms oriented along the z direction and extract
Heisenberg exchange constants from HDWFs. The Heisenberg
model is defined as

H = −
∑

ij

Jij Si · Sj , (42)

where the Heisenberg exchange constants Jij mediate the
exchange interaction between the normalized moments Si

and Sj located at the sites i and j , respectively. In case of
the magnetic monatomic chain, the most general solution to
Eq. (42) is the noncollinear (flat) spin-spiral state

Sn = (cos naq, sin naq,0), (43)

which is characterized by the spin-spiral vector q = q êz. Here,
a is the lattice constant along the chain axis. If we exploit
translational invariance Jij = J0|j−i| and Eq. (43), the energy
of the system assumes the form

E(q) = −2
∑

n

J0n cos(naq). (44)

Expanding the energy in the vicinity of the ferromagnetic state
(q = 0), we can define the spin stiffness A of the magnetic
chain through E(q → 0) ≈ E(0) + Aq2. In order to access
efficiently the Heisenberg exchange constants J0n as well as

the spin stiffness A, we treat the spin-spiral vector q as an
additional variable of a multiparameter Hamiltonian H (k,q).

Without spin-orbit interaction we can make use of the so-
called generalized Bloch theorem, which dictates a specific
Bloch-like shape of the spinor eigenstates:

�kqn(r) =

(

�
↑
kqn(r)

�
↓
kqn(r)

)

= eik·r

(

e−i
q

2
·r u

↑
kqn(r)

ei
q

2
·r u

↓
kqn(r)

)

, (45)

where u
↑
kqn(r) and u

↓
kqn(r) are lattice periodic functions. Using

the latter ansatz allows us to avoid computationally demanding
first-principles calculations of large supercells and to perform
all the calculations in a unit cell of one Mn atom. The Bloch
states, Eq. (45), can be chosen to obey the periodic gauge
in k and q simultaneously. However, we emphasize that due
to the q-dependent phases in Eq. (45), which arise from
spin-1/2 rotation matrices, the period associated with the q

mesh is enhanced by an overall factor of two (recall that
spin-1/2 acquires a Berry phase of π upon rotating by 360◦).
Consequently, for the construction of HDWFs, we have to
uniformly sample the range [0,4π/a) of q values.

B. Symmetry

We have mentioned above that the Bloch states, Eq. (45), are
periodic on the interval [0,4π/a) of q points. However, as we
will show now, energy dispersion Ekqn and wave functions to a
q value in [2π/a,4π/a) can be derived from the corresponding
quantities in the interval [0,2π/a). Therefore the effective
number of spin-spiral vectors at which the electronic structure
needs to be calculated from first principles is reduced by a
factor of two.

At a given spin-spiral vector q, the Hamiltonian H (q) has
eigenvectors �kqn and eigenvalues Ekqn. By symmetry, H (q) is
identical to the Hamiltonian H (q+G) at q + G, where G is a re-
ciprocal lattice vector. Consequently, both Hamiltonians have
(i) the same eigenvalue spectrum, i.e., Ekqn = Ek′ q+G n and
(ii) the same set of eigenfunctions such that �kqn = �k′ q+G n.
In the first-principles calculation, these eigenfunctions obey
the generalized Bloch theorem, Eq. (45), which allows us to
determine the above crystal momentum k′ explicitly:

�kqn(r) = eik·r

(

e−i
q

2
·r u

↑
kqn(r)

ei
q

2
·r u

↓
kqn(r)

)

= eik·r





ei G
2
·r e−i

q+G

2
·r u

↑
kqn(r)

ei G
2
·r ei

q+G

2
·r e−iG·ru

↓
kqn(r)





= ei(k+ G
2 )·r





e−i
q+G

2
·r ũ

↑
k+ G

2
q+G n

(r)

ei
q+G

2
·r ũ

↓
k+ G

2
q+G n

(r)





= �k+ G
2

q+G n(r), (46)

where we defined the lattice periodic functions

ũ
↑
k+ G

2
q+G n

(r) = u
↑
kqn(r), (47)

ũ
↓
k+ G

2
q+G n

(r) = e−iG·r u
↓
kqn(r). (48)
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If we change the spin-spiral vector q by G, the Bloch state
�kqn and its energy Ekqn are moved to a different crystal
momentum k′ = k + G/2. Consequently, Bloch states need
to be computed only for those spin-spiral vectors, which lie in
[0,2π/a).

C. Discussion of the implementation

The evaluation of M (k,b)
mn (λ), Eq. (34), does not differ from

the case of standard MLWFs, except that M (k,b)
mn (λ) needs to be

computed for several values of λ = q. The matrix M(λ,b)
mn (k)

in Eq. (35) is given by the overlaps of periodic parts ukqm(r)
at neighboring spin-spiral vectors q and q + b. If we exploit
the generalized Bloch theorem (45), these overlaps assume the
form

M(q,b)
mn (k) = 〈ukqm|uk q+b n〉

=
∑

σ

∫

e±i b
2
·r(�σ

kqm(r)
)∗

�σ
k [q+b] n(r) dr. (49)

Here, [q + b] is a backfolding of the spin-spiral vector
q + b to the first BZ, and σ = ↑,↓. The positive (negative)
sign is taken in Eq. (49) for the up component (down
component) of the Bloch spinor. We describe in Appendix A
the implementation of Eq. (49) within the FLAPW method. To
reduce the computational burden, we can apply the symmetry
considerations of Sec. IV B to the calculation of the above
overlaps. We find that

M(q+G,b)
mn (k) = M(q,b)

mn

(

k +
G

2

)

= M(q,b)
mn

(

k −
G

2

)

(50)

and, likewise,

M (k,b)
mn (q + G) = M

(k+ G
2
,b)

mn (q) = M
(k− G

2
,b)

mn (q), (51)

where the periodic gauge of the Bloch states in k space was
used. Thus we can restrict ourselves to the calculation of
M

(q,b)
mn (k) and M (k,b)

mn (q) for spin-spiral vectors in [0,2π/a).
Similarly, the projections 〈�kqm|gn〉 in Eq. (37) need to be
computed only for those q that lie in this interval.

Returning to Eq. (35), we have to calculate additionally the
auxiliary overlaps. First, we modify the general shape of the
auxiliary orbital ζq(ξ ), which was originally given by Eq. (14).

We choose ζq(ξ ) = ei
q

2
·ξρq(ξ ) such that the auxiliary orbital

has the same q period as the Bloch states (45). The lattice
constant in the auxiliary space is thus given by a. Then, the
auxiliary overlaps 〈ρq |ρq+b〉 can be calculated numerically
as discussed in Sec. III B. As an alternative, we can use the
analytic expression (17) with τ = 2π/(Nqa).

Projections 〈�kqm|gn〉 and 〈ζq |h〉 onto localized trial
functions gn(r) and h(ξ ) enter Eq. (37). The FLAPW im-
plementation of the former is described in Appendix A. To
obtain 〈ζq |h〉, we project conveniently onto the single-well
solution (15) such that the integral is identical to one. However,
projections onto different trial functions (e.g., Gaussians) can
be employed as well.

D. Computational details

Studies of 3d transition metal nanowires indicate that
spin-orbit effects such as the magnetic anisotropy, which we

FIG. 2. (Color online) Generalized Wannier interpolation of the

electronic band structure of a one-dimensional Mn chain along high-

symmetry lines in the composite (k,q) BZ. The interpolation based

on HDWFs (red solid lines) is in excellent agreement with direct first-

principles calculations (black circles). Energies are plotted relative to

the Fermi level in the ferromagnetic case EF (q = 0). The thin dotted

line indicates the upper boundary of the inner energy window of

2.2 eV.

discuss in Sec. V, should have a rather small influence on
the electronic structure of Mn atoms due their half-filled
d shell [28,29]. Therefore we neglect spin-orbit coupling
for the moment. As a first step, using the one-dimensional
version [30] of the density functional theory Jülich FLAPW
code FLEUR [31], we determine self-consistently the electronic
density of a one-dimensional ferromagnetic linear chain of
Mn atoms with a lattice constant of a = 5 bohr. We employ
six local orbitals to treat the 3p core states of Mn. The RPBE
parametrization of the exchange-correlation potential was used
[32]. The nonoverlapping muffin-tin radii and the plane-wave
cutoff were chosen to be 2.1 bohr and 3.8 bohr−1, respectively.
Starting from this charge density, we solve the Kohn-Sham
equations on a uniform mesh of eight k points separately for
16 spin-spiral vectors.

After that, the information about the wave functions at all
k and q points is used to compute the necessary overlaps
and projections. As first-guess trial orbitals gn we use three
d orbitals and six sp3d2 orbitals for each spin direction.
The overlaps and projections of the auxiliary orbital ζq are
derived either numerically or analytically as discussed before.
A maximal real-space localization of the HDWFs is achieved
using our extension of the WANNIER90 code to four space
dimensions. Because of the metallic character of the magnetic
Mn chain, a disentanglement [23] of 18 optimally-connected
quasi-Bloch states from a manifold of 36 Bloch orbitals is
performed. The upper bound of the inner, or frozen, energy
window is 2.2 eV above the Fermi energy of the ferromagnetic
state EF (q = 0) (see Fig. 2).

Constructing such HDWFs requires a similar amount of
computer time as the generation of individual sets of MLWFs
for all of the 16 spin-spiral vectors. However, we emphasize
that the single set of HDWFs encodes the complete information
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of the electronic structure as a function of both k and q in the
energy window of interest.

E. Band structure interpolation

After constructing HDWFs for the one-dimensional chain,
we employ these functions in an interpolation of the multipa-
rameter Hamiltonian according to the discussion of Eqs. (38)–
(41). Figure 2 presents the results of the generalized Wannier
interpolation of the band structure compared to the direct
calculation. The inset of Fig. 2 does not show the usual
BZ of crystal momentum but a composite BZ combining the
crystal momentum k = k êz and the spin-spiral vector q = q êz.
According to the remark below Eq. (45), the composite BZ is
given by [−π/a,π/a] × [−2π/a,2π/a], i.e., it is rectangular.

A single set of 18 HDWFs allows for an accurate interpola-
tion of the energy bands in the reciprocal (k,q) space. The path
from the Ŵ point (k = 0,q = 0) to the X point (k = π/a,q =
0) describes the electronic band structure of a ferromagnetic
Mn chain. The standard Wannier interpolation for noncollinear
or spin-spiral states, which was employed, e.g., in Ref. [33], is
always restricted to high-symmetry lines parallel to Ŵ-X where
q is constant. In contrast, the interpolation based on a single set
of HDWFs gives access to the electronic band structure along
any given path in the composite BZ. Thereby we can easily
compute the electronic band structure along the path from the
X point to the point M (k = π/a,q = 2π/a). Along X-M ,
the crystal momentum is kept fixed, while the texture of the
magnetic moments changes from the ferromagnetic (q = 0)
over to the antiferromagnetic state (q = π/a) and back to
ferromagnetic order (q = 2π/a). Due to the symmetry of the
band structure discussed in Sec. IV B, band energies differ at
X and M . The very same set of HDWFs allows further for
an interpolation of the band structure along the diagonal path
Ŵ-M of the BZ, which is not so easily accessible with the
standard first principles codes. The band energies at Ŵ and
M are identical due to symmetry (cf. Sec. IV B). Overall, the
accuracy of the generalized interpolation of the band structure
is excellent within the frozen window.

F. Real-space visualization of HDWFs

While MLWFs in magnetically collinear systems without
spin-orbit coupling are real-valued [34], they are complex-
valued functions in noncollinear systems, and in the presence
of spin-orbit coupling [27]. In contrast, the imaginary part of
the HDWFs of spin spirals is negligibly small such that we
can restrict ourselves to a discussion of the real part of spinor
valued HDWFs.

In the following, we give an argument for the real-
valuedness of HDWFs for spin spirals in absence of spin-orbit
coupling. We consider the Hamiltonian

H (q)(r) = −
�

2

2m
∇2 + V (r) +

∑

n

B(r − na êz)Sn · σ

= −
�

2

2m
∇2 + V (r)

+
∑

n

B(r − na êz)

(

0 e−inaq

einaq 0

)

, (52)

where the first two terms are the kinetic energy and the scalar
potential, respectively. The last term describes the interaction
with the noncollinear exchange field. The amplitude of the
exchange field is given by B(r) and its direction is given by
Sn, Eq. (43), within the nth atomic sphere. It follows that

(H (q)(r))∗ = H (−q)(r). (53)

If �kqn is an eigenfunction of H (q) to the real eigenvalue Ekqn,
we can apply a complex conjugation to the corresponding
Schrödinger equation and arrive at

H (−q)(r)(�kqn(r))∗ = Ekqn(�kqn(r))∗, (54)

where Eq. (53) was used. The complex conjugate of �kqn

is an eigenfunction of H (−q) with energy Ekqn. In general,
eigenfunctions of H (−q) are labeled by �k−qn such that we
necessarily need to find (�kqn)∗ = �k′−qn for some crystal
momenta k and k′. From the explicit shape of both states
dictated by the generalized Bloch theorem, Eq. (45), follows
that k′ = −k. We can choose the auxiliary orbital ζq of Eq. (14)
to obey the relation (ζq)∗ = ζ−q . Thus the product states in
Eq. (18) satisfy

(�kqn(r,ξ ))∗ = �−k−qn(r,ξ ). (55)

If the unitary matrix satisfies
(

U (k,q)
mn

)∗ = U (−k,−q)
mn , (56)

the real valuedness of the HDWFs is implied by Eq. (55):

W00n =
1

NkNλ

∑

kqm

U (k,q)
mn �kqm

=
1

2NkNλ

∑

kqm

[

U (k,q)
mn �kqm + U (−k,−q)

mn �−k−qm

]

=
1

2NkNλ

∑

kqm

[

U (k,q)
mn �kqm +

(

U (k,q)
mn �kqm

)∗ ]

=
1

NkNλ

ℜ
∑

kqm

U (k,q)
mn �kqm. (57)

A very similar argument shows that standard WFs can be
chosen to be real-valued in some cases: For q = 0, Eq. (52)
describes a magnetically collinear system without spin-orbit
coupling, for which Eqs. (53) and (55) simplify into (H (r))∗ =
H (r) and (�kn(r))∗ = �−kn(r), respectively. The choice
U (−k)

mn = (U (k)
mn)∗ in Eq. (1) leads then to the real-valuedness

of the resulting WFs.
To visualize HDWFs in real space, we first divide a given

HDWF by its phase at the maximal absolute value. Then, one
of the four spatial coordinates (x, y, z, or ξ ) is kept constant
to obtain the three-dimensional plots of Figs. 3 and 4. In
general, we find that for a fixed auxiliary coordinate ξ = ξ0, the
HDWFs (see Fig. 3) closely resemble the first-guess functions
of d and sp3d2 character visualizing the chemistry of the
one-dimensional Mn chain. Variations of the value ξ0 do not
change the orbital character qualitatively. Choosing a constant
value z = z0 along the chain axis, we present the shape of a
dxy-like HDWF in Fig. 4. The HDWF extends throughout a
single unit cell as a function of ξ due to the construction of the
auxiliary orbital, Eq. (14), based on the deep-well limit.
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(x, y)

z

(x, y)

z

FIG. 3. (Color online) Isosurfaces of a dxy-like HDWF for ξ0 =
0. We highlight the xy-plane which is perpendicular to the physical

chain axis. The up-spin (left) is opposite in sign compared to the

down-spin component (right), which is of equal magnitude. The

functions were plotted using the program XCRYSDEN (Ref. [35]).

In Figs. 3 and 4, we show HDWFs in the home unit cell, i.e.,
R = 0 and � = 0. How can we obtain the functions WR�n to
finite R and � from those in the home unit cell? The spinor
components are constructed according to

W σ
R�n(r,ξ )

=
1

NkNq

∑

kq

e−ik·(R−r)e∓i
q

2
·re−iq·(�− ξ

2
)ũσ

kqn(r)ρq(ξ ), (58)

which follows from Eqs. (24) and (45) and the choice of
the auxiliary orbital. Here, the Bloch-like periodic parts

ũσ
kqn =

∑

m U
(k,q)
mn uσ

kqm contain the unitary gauge matrix, and
σ = ↑,↓. In the case of the usual WFs, simple lattice
translations need to be applied to obtain WRn(r) to any R, i.e.,
WRn(r) = W0n(r − R). Compared to the usual WFs, we find
from Eq. (58) a slightly more complicated relation between
W00n(r,ξ ) localized in the home unit cell and WR�n(r,ξ ):

W σ
00n(r,ξ ) = W σ

0�n(r,ξ + 2�) = W σ
R0n(r + R,ξ ± R), (59)

and thus

W σ
R�n(r,ξ ) = W σ

00n(r − R,ξ − 2� ∓ R), (60)

where the upper (lower) sign is for the up (down) component of
the spinor. We depict in Fig. 5 the above translational property
of HDWFs for spin spirals. Due to the coupling of k and q to the
same real-space coordinate r [see Eq. (45)], a spin-dependent
shift of the spinor components occurs for finite R. We can
consider the distance vector between the centers of W σ

00n(r,ξ )

(x, y)

ξ

(x, y)

ξ

FIG. 4. (Color online) Isosurfaces of a dxy-like HDWF for z0 =
0. The auxiliary dimension ξ is perpendicular to the highlighted xy

plane. Up-spin component (left) and down-spin component (right)

are of equal magnitude but opposite in sign.

FIG. 5. (Color online) Scheme of the translation property

Eq. (60) of HDWFs in the composite lattice (black circles). Both

spin components of the function W00n are localized in the home unit

cell (0,0). In contrast, the spin components of WR�n are displaced in

the auxiliary dimension with respect to the position (R,2�). Arrows

indicate the corresponding distance vectors t
↑
R�n and t

↓
R�n.

and W σ
R�n(r,ξ ):

tσ
R�n =

〈

W σ
R�n

∣

∣

(

r

ξ

)

∣

∣W σ
R�n

〉

−
〈

W σ
00n

∣

∣

(

r

ξ

)

∣

∣W σ
00n

〉

=
(

R

2� ± R

)

, (61)

which follows from Eq. (60). If W σ
00n(r,ξ ) is localized in the

home unit cell at the position (rc,ξ c), W σ
R�n(r,ξ ) is centered

at (rc + R,ξ c + 2� ± R) as shown in Fig. 5. While the direct
lattice vector R determines the r center of the HDWFs of spin
spirals, the center in ξ space depends on both � and R.

G. Heisenberg exchange constants and spin stiffness

Starting from the generalized Wannier interpolation of
the band structure throughout the (k,q) space, we calculate
the dispersion E(q) of the system as the sum of occupied
eigenvalues for a given value of q. Although the energy bands
are interpolated nicely using a coarse mesh of 8 k points and 16
q points as shown in Fig. 2, we find by comparison with direct
first principles results (see upper panel of Fig. 6) that an ab

initio mesh of 16 k points and 24 q points is necessary in order
to interpolate the dispersion E(q) of the system accurately.
This means that Bloch functions need to be computed from
first principles on a (k,q) mesh of 16 × 12 if the symmetry
relations from Sec. IV B are exploited.

The value q0, which minimizes the energy E(q), defines
the ground state of the magnetic system among all possible
ferromagnetic, antiferromagnetic, and noncollinear spin-spiral
configurations. Our interpolation of E(q) in terms of HDWFs
reproduces precisely the curve obtained from direct calculation
and thereby predicts the spin-spiral state with q0 = 0.314 ·
2π/a as the ground state of the one-dimensional Mn chain at
the considered interatomic distance. The energy difference
between ferromagnetic state and ground state amounts to
E(0) − E(q0) = 55.2 meV. We further extract the Heisenberg
exchange constants J0n by fitting Eq. (44) to the HDWF-
interpolated dispersion E(q). The lower panel of Fig. 6 reveals
that the exchange constants compare excellently with previous
work [29].
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FIG. 6. (Color online) (Top) Generalized interpolation of E(q) −
E(0) of the magnetic Mn chain. HDWF interpolation (solid red

line) reproduces the direct results (open circles) if the HDWFs are

constructed using Nk = 16 k points and Nq = 24 q points. (Bottom)

The Heisenberg exchange constants J0n obtained by fitting Eq. (44)

to the Wannier interpolated energy E(q) (circles) are in excellent

agreement with Ref. [29] (triangles).

Wannier interpolation is particularly rewarding in the
computation of transport properties as crystal momentum
derivatives of the Hamiltonian can be taken analytically
[2,3,36,37]. Such derivatives determine, for example, the
velocity operator v = ∇kH

(k)/�. In the case of spin spirals,
the derivative of H (k,q) with respect to q can be conveniently
obtained from generalized Wannier interpolation:

∂H (k,q)

∂qα

=
∑

R�

i	αeik·Reiq·�H (R,�). (62)

Here, H (R,�) is the matrix of the hoppings Hnm(R,�), and
qα and 	α refer to the αth components of the vectors q and �,
respectively. Such expressions allow us to calculate the second
derivative of the energy E(q) conveniently, from which we
obtain the spin-stiffness A:

A =
1

2

∂2E(q)

∂q2

∣

∣

∣

∣

q=0

. (63)

Necessary details on the implementation of the scheme to
obtain derivatives of E(q) are provided in Appendix E.
From the evaluation of Eq. (63), we obtain a value of

A = −174.1 meV × Å
2

for the spin stiffness of the one-
dimensional magnetic chain in the vicinity of the ferromag-
netic state. To verify the estimated value for the spin stiffness,
a polynomial even in q is fitted to the interpolated dispersion

near q = 0. We extract a reference value of −173.4 meV × Å
2

from this fit, which is in very good agreement with the spin
stiffness obtained from calculating directly Eq. (63).

V. APPLICATION TO THE MAGNETIC ANISOTROPY

IN A CHAIN OF Mn ATOMS

A. Introduction

In this section, we discuss HDWFs for the interpolation
of the multiparameter Hamiltonian H (k,m̂), where m̂ is the
ferromagnetic magnetization direction. As an application, we
consider the magnetocrystalline anisotropy energy (MAE),
which is the energy difference between hard and easy
axis of the system. Therefore we adapt our description
of the one-dimensional magnetic chain of Mn atoms to
include spin-orbit coupling. The magnetization direction
m̂ = (sin θ cos φ, sin θ sin φ, cos θ ) is specified in spherical
coordinates by θ and φ. Here, we restrict ourselves to φ = 0.
Bloch spinors and their periodic parts carry a dependence on
θ , i.e., �kθn(r) = eik·rukθn(r). We include spin-orbit coupling
by the second-variation scheme [38].

B. Discussion of the implementation

According to Sec. III C 3, HDWFs can be constructed using
projections of the Bloch spinors and overlaps of their periodic
parts. In the second-variation scheme, which we employ to in-
clude spin-orbit coupling, the coordinate system in spin space

rotates together with m̂. Consequently, the spinors ukθn(r) =
(u

↑
kθn(r),u

↓
kθn(r)) and uk θ+b n(r) = (u

↑
k θ+b n(r),u

↓
k θ+b n(r)) re-

fer to different spin-coordinate systems when b �= 0. Thus we
need to transform the spinors into a common spin-coordinate
frame when we compute the overlaps of the periodic parts at
neighboring angles θ and θ + b. We use the unitary rotation

χ (θ ) =

(

cos θ
2

− sin θ
2

sin θ
2

cos θ
2

)

(64)

to obtain all periodic parts ukθn in the same global spin-

coordinate frame by u
gl

kθn = χ (θ )ukθn. Then, the overlaps are
given by

M(θ,b)
mn (k) =

〈

u
gl

kθm

∣

∣u
gl

k θ+b n

〉

=
∑

σσ ′

[χ †(θ )χ (θ + b)]σσ ′
〈

uσ
kθm

∣

∣uσ ′

k θ+b n

〉

, (65)

where σ = ↑,↓. The matrix elements 〈uσ
kθm|uσ ′

k θ+b n〉 are

〈

uσ
kθm

∣

∣uσ ′

k θ+b n

〉

=
∫

(

�σ
kθm(r)

)∗
�σ ′

k [θ+b] n(r) dr, (66)

where [θ + b] is a backfolding of the value θ + b to the one-
dimensional BZ. These overlaps do not contain an additional
b-dependent phase as in the cases of the spin spiral, Eq. (49),
and standard MLWFs. We provide additional details and derive
corresponding expressions to construct the matrix elements
within the FLAPW method in Appendix D. Apart from the
overlaps M(θ,b)

mn (k) we also need the overlaps M (k,b)
mn (λ) with

λ = θ [see Eq. (34)]. However, the calculation of M (k,b)
mn (θ )

does not differ from the case of standard MLWFs except that
several values of θ need to be considered.
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C. Computational details

We determine the charge density of the ferromagnetic chain
self-consistently using the computational setup of Sec. IV but
including now spin-orbit coupling in second-variation. Based
on the converged electronic density, we solve on a uniform
k mesh the Kohn-Sham equations for each magnetization
direction separately. The values of θ are chosen from the
range [0,4π ) as Bloch spinors acquire a minus sign upon
360◦ rotation, i.e., �k θ+2π n = −�kθn. However, symmetry
considerations analogous to Sec. IV B reduce the number
of angles θ for which the Bloch functions need to be
computed.

Then, the overlaps M(θ,b)
mn (k), M (k,b)

mn (θ ) and projections are
calculated. We project onto the same set of localized trial
functions as in the case of Sec. IV, and further incorporate the
analytical solution for the auxiliary orbital. After performing
a disentanglement of 18 optimally connected quasi-Bloch
states from a manifold of 36 Bloch states with an inner
window up to 2.2 eV above the Fermi energy EF (θ = 0),
we generate maximally localized HDWFs using our extension
of the WANNIER90 program to four dimensions.

D. Magnetic anisotropy

The single set of HDWFs is employed to interpolate the
energy bands Ekθn in k and θ as described in Eqs. (38)–(41). In
Fig. 7, the energy difference E(θ ) − E(0) is shown as obtained
from such an energy interpolation. Compared to the spin-spiral
application of Sec. IV, the HDWFs have to be constructed on
a denser ab initio mesh of 24 k and 32 θ points (in [0,4π )) to
reproduce the energy difference accurately. We associate this
particularity with the small MAE of the one-dimensional Mn
chain of E(0) − E(π/2) = 0.217 meV. Thus a ferromagnetic
magnetization direction perpendicular to the chain axis is
favored over a parallel orientation as predicted in Ref. [28].
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FIG. 7. (Color online) Generalized Wannier interpolation of

E(θ ) − E(0) of the magnetic Mn chain. Irrespective of the small

energy scale, we can interpolate (solid red line) the energy difference

as a function of the magnetization direction in very good agreement

with the direct calculation (open circles).

The uniaxial anisotropy energy can be parametrized by
E(θ ) = K1 sin2 θ , where K1 is the first anisotropy constant,
and it follows that [39]

K1 =
∂E(θ )

∂θ

∣

∣

∣

∣

θ=π/4

. (67)

Generalized Wannier interpolation can be employed conve-
niently to evaluate the above derivative with respect to the
magnetization direction.

At zero temperature, we derive in Appendix E the expres-
sion

∂E(θ )

∂θ
=

1

Nk

∑

Ekθn�EF (θ)

∂Ekθn

∂θ

=
1

Nk

∑

Ekθn�EF (θ)

〈

ϕkθn

∣

∣

∣

∣

∂H (k,θ)

∂θ

∣

∣

∣

∣

ϕkθn

〉

. (68)

Here, |ϕkθn〉 are eigenstates of H (k,θ) and the derivative of
H (k,θ) can be obtained conveniently within the generalized
Wannier interpolation scheme:

∂H (k,θ)

∂θ
=
∑

R	

i	eik·Reiθ	H (R,	), (69)

where H (R,	) is the matrix of the hoppings Hnm(R,	)
between HDWFs. The derivative of E(θ ) at zero temperature,
Eq. (68), is the sum of the torques ∂Ekθn/∂θ which electrons
of band n moving through the solid with crystal momentum k

exert on the magnetization. Using this approach, we compute
an anisotropy constant of K1 = −0.224 meV, which agrees
nicely with the value for E(π/2) − E(0) given above.

VI. POSSIBLE FURTHER APPLICATIONS

Above, we have shown that HDWFs can be constructed for
first principles Hamiltonians and we discussed applications
such as spin stiffness and MAE. In the following, we
explore within models additional promising applications of
HDWFs.

A. Virtual crystal approximation (VCA)

The electronic structure of nonstoichiometric disordered
alloys such as FexCo1−x can be computed within VCA where
virtual atoms with electronic structure corresponding to the
concentration x constitute a regular lattice [40]. The FLAPW
method with a properly adjusted number of valence electrons
is well-suited to describe these systems in case of alloys
composed out of neighbors in the periodic table like Fe and
Co [41]. By computing the electronic structure for several
values of x, HDWFs can be constructed which describe the
multiparameter Hamiltonian H (k,x) for any concentration x.
Thus the treatment of alloys such as FexCo1−x on a dense
mesh of concentrations is simplified. The gauge of the alloy
Hamiltonians is guaranteed to be smooth due to the single set
of HDWFs used in the generalized interpolation. If one simply
mixes the MLWFs for x = 0 and x = 1, such a smooth gauge
is more difficult to achieve [42].

Here, we employ a toy model to outline the basic principle
leaving the implementation into FLAPW for future work. We
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FIG. 8. (Color online) Electronic band structure of the multipa-

rameter Hamiltonian Eq. (70) as obtained by generalized interpolation

(solid and dashed lines). The dispersion is depicted as a function of

the crystal momentum for constant λ (left), and as a function of the

parameter λ for constant k (right). The exact results (open circles and

diamonds) agree nicely with the interpolation for the isolated group

of energy bands. We have chosen the model parameters a = 3.0 bohr,

b = 2.9 bohr, α = 0.1, and V0 = 544.0 eV.

study modulations of the depth of attractive potential wells
at positions Rj = ja, which define a one-dimensional lattice
with lattice constant a along the z axis (see Fig. 1 for a sketch
of the potential profile). The corresponding one-dimensional
single-particle Hamiltonian carries a parametric dependence
on the variable λ:

H (λ)(z) = −
�

2

2m

d2

dz2
− (1 + α sin λ)V0

∑

Rj

�b
Rj

(z), (70)

where |α| < 1, and the well function �b
Rj

(z) is defined by

Eq. (13). The width b and the potential strength V0 are chosen
such that the three lowest energy bands form an isolated group.
The Hamiltonian of Eq. (70) is diagonalized in a plane-wave
basis on a uniform 8 × 8 (k,λ) mesh. The λ points lie in
the interval [0,2π ). Necessary overlaps and projections onto
localized Gaussians are constructed and the information on
the auxiliary orbital ζλ is derived numerically as discussed in
Sec. III B. Then, the WANNIER90 program is used to achieve a
maximal localization of HDWFs. Figure 8 demonstrates that
the generalized interpolation reproduces the electronic band
structure as a function of k and λ accurately.

B. Ferroelectric polarization

In ferroelectrics like the perovskite oxide BaTiO3 [43], a
relative displacement characterized by the vector λ of one of
the sublattices leads to a change in ferroelectric polarization.
To determine the value of this change, the polarization in the
form of MLWF centers or the Berry phase has to be computed
along a certain path in λ space [5–7]. We can use the HDWFs

E
k

q
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V
)

λka
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4
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-6

0
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k = 0 k = π

a

-π π

FIG. 9. (Color online) Electronic band structure of the multipa-

rameter Hamiltonian Eq. (71) as obtained by HDWF-interpolation

(solid and dashed lines). We present the dispersion as a function of the

crystal momentum at fixed λ (left), and as a function of the parameter

λ at fixed k (right). The interpolation is in excellent agreement with the

exact results (open circles and diamonds). We have chosen a = 3.0

bohr, b = 0.5 bohr, and V0 = V ′
0 = 272.0 eV.

approach in order to interpolate the electronic structure of
H (k,λ) along the λ path.

We use the following simple model to describe displace-
ments between sublattices:

H (λ)(z) = −
�

2

2m

d2

dz2
−
∑

Rj

[

V0�
b
Rj

(z) + V ′
0�

b
Rj

(z − τλ)
]

,

(71)

where τλ = a/2 + δλ and δλ = −(b/2) sin λ describes the
relative displacement. In addition to the first well of depth V0,
which is kept fixed, the same unit cell contains a second well
of strength V ′

0 at a variable position. Again, we select the well
parameters such that the two lowest bands form an isolated
group. Employing a plane-wave basis, we diagonalize the
Hamiltonian of Eq. (71) on a mesh of 8 k points for each of the
eight parameters λ chosen uniformly from the range [0,2π ).
Having at hand the Bloch states �kλn, we construct overlaps
and projections onto Gaussians. After deriving numerically
the auxiliary orbital ζλ as discussed in Sec. III B, we use the
WANNIER90 code to establish a maximal localization of the
HDWFs. The band structure results of the generalized Wannier
interpolation presented in Fig. 9 are in excellent agreement
with exact results.

For a given value of λ the ferroelectric polarization can be
obtained as sum over the centers of WFs constructed from the
occupied bands:

Pλ = −
e

V

∑

n∈occ

〈

W λ
0n

∣

∣r
∣

∣W λ
0n

〉

. (72)
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Here, e > 0 is the positive electron charge, V is the unit cell
volume, and |W λ

0n〉 is a standard WF constructed according
to Eq. (1) for H (λ). The above ferroelectric polarization is
not unique but defined up to the polarization quantum. Only
polarization changes are unique and thus physical. However,
to determine unambiguously the change of ferroelectric polar-
ization between two points λ1 and λ2 according to Eq. (72), we
usually need to ensure a smooth gauge of the Bloch states in λ

space. Such a gauge is guaranteed if we rewrite the ferroelectric
polarization, Eq. (72), in terms of HDWFs.

How can we now compute Pλ within the formalism of
HDWFs? By performing a Fourier transformation in �, we
obtain WFs at λ:

∑

�

eiλ·�WR�n(r,ξ ) =
1

Nk

∑

km

e−ik·RU (k,λ)
mn �kλm(r,ξ )

=
ζλ(ξ )

Nk

∑

km

e−ik·RU (k,λ)
mn �kλm(r)

= ζλ(ξ )W λ
Rn(r). (73)

Recall that we generate just a single set of HDWFs en-
coding the electronic structure information in (k,λ) space.
Consequently, a smooth gauge is automatically built into the
construction of HDWFs such that also the above standard
WFs are guaranteed to be smooth in λ. Inserting Eq. (73)
into Eq. (72) yields

Pλ = −
e

V Nλ

∑

n∈occ

∑

��′

eiλ·(�′−�)〈W0�n|r|W0�′n〉

= −
e

V

∑

n∈occ

∑

�

eiλ·�〈W00n|r|W0�n〉, (74)

where we exploited

〈

W λ
0n

∣

∣r
∣

∣W λ
0n

〉

=
1

Nλ

〈

ζλW
λ
0n

∣

∣r
∣

∣ζλW
λ
0n

〉

, (75)

which follows from 〈ζλ|ζλ〉 = Nλ. Equation (74) can be
employed to obtain an interpolated value for the ferroelectric
polarization at values λ that lie between the points of the coarse
λ mesh used to generate the HDWFs. Of course, this works
only if the system is insulating along the entire considered λ

path. The λ sum of Pλ evaluates to

∑

λ

Pλ = −
e

V

∑

n∈occ

∑

�

∑

λ

eiλ·�〈W00n|r|W0�n〉

= −
eNλ

V

∑

n∈occ

〈W00n|r|W00n〉, (76)

which is determined by the centers of HDWFs available in the
extended WANNIER90 implementation.

Analogously to derivatives of the multiparameter Hamilto-
nian discussed in Appendix E, we can calculate λ derivatives
of the ferroelectric polarization, Eq. (74), which read

∂ Pλ

∂λα

= −
e

V

∑

n∈occ

∑

�

i	αeiλ·�〈W00n|r|W0�n〉. (77)

Here, λα and 	α are the αth components of λ and �,
respectively. Differentiating the ferroelectric polarization with

respect to the sublattice displacement δ (which depends on
λ), we obtain the Born effective charge tensor. For the
one-dimensional model of Eq. (71) it follows that

QB =
∂Pδ

∂δ

∣

∣

∣

∣

δ=0

=
∂Pλ

∂λ

∂λ

∂δ

∣

∣

∣

∣

λ=0

= −
2

b

∂Pλ

∂λ

∣

∣

∣

∣

λ=0

=
2e

bV

∑

n∈occ

∑

	

i	〈W00n|z|W0	n〉. (78)

C. Current-induced torques in noncollinear magnetic systems

Current-induced torques on the magnetization (spin
torques) are thought to play an important role in future
magnetic memory devices. These spin torques result from the
exchange of angular momentum between two magnets of dis-
tinct magnetization direction (spin transfer torques) [44–46],
or between spin and lattice (spin-orbit torques) [10,11,47–49].
The spin-orbit torques can depend strongly on the magne-
tization direction [11]. We expect that HDWFs provide a
convenient scheme to extract this directional dependence.

To demonstrate that the generalized interpolation of the
Hamiltonian with respect to isolated spin moment rotations in
real space can be tackled with the formalism of HDWFs, we
modify Eq. (70) to describe two magnetic “atoms” separated
by half the lattice constant s = a/2. And while we keep the
orientation of one of the atoms fixed, i.e., n̂1 = êx , the direction
of the other moment, n̂2 = (cos λ, sin λ,0), is tilted by the
angle λ. The resulting single-particle Hamiltonian assumes
the form

H (λ)(z) = −
�

2

2m

d2

dz2
− V0

∑

Rj

[

�b
Rj

(z) + �b
Rj

(z − s)
]

+B0

∑

Rj

[

�b
Rj

(z)n̂1 + �b
Rj

(z − s)n̂2

]

· σ , (79)

where B0 is the strength of the exchange potential, and σ is
the vector of Pauli matrices. Diagonalizing the matrix Eq. (79)
in a plane-wave basis on a coarse 8 × 16 (k,λ) mesh allows
us to extract the Bloch spinors, and to calculate the matrices
necessary to apply the WANNIER90 minimization to HDWFs.
Recalling that the Bloch spinors acquire a Berry phase of
π upon rotating by 360◦, we have to choose the λ points
uniformly in the interval [0,4π ) [see also the remark below

Eq. (45)]. The auxiliary orbital is taken as ζλ(ξ ) = ei λ
2
ξρλ(ξ ).

As shown in Fig. 10, HDWFs succeed in the precise interpo-
lation of the band structure of the family of Hamiltonians (79)
throughout the composite BZ of k and λ. For this model, we
also present in Fig. 11 the localized real-space distribution of
one of the low-energy HDWFs. Remarkably, the spinor-valued
HDWF turns out to be purely real. The individual components
are both centered in the potential wells at s = a/2, where
the exchange field is rotated. However, the down component
is displaced by +2 lattice constants along the ξ direction
compared to the up component.

In the following, we give a simple argument for the shift
in the coordinate ξ between up and down components of the
HDWF shown in Fig. 11. If we consider the deep-well limit
V0 → ∞, the two atoms in the unit cell do not hybridize
and decouple completely. Thus the problem is equivalent
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FIG. 10. (Color online) Treating the tilting angle λ as additional

variable in the multiparameter Hamiltonian, we can interpolate (solid

and dashed lines) accurately the electronic band structure throughout

(k,λ) space. The dispersion is depicted either as a function of the

crystal momentum for constant λ (left), or as a function of the

parameter λ for constant k (right). Open circles and diamonds indicate

the exact results. The model parameters are a = 3.0 bohr, b = 1.0

bohr, V0 = 272.0 eV, and B0 = 27.2 eV.

to finding the lowest-energy solution for a chain where all
moments rotate with λ. The spin part (eiλ/2, − e−iλ/2) of such
a solution describes the rotation around the z axis of a spin
pointing initially in the −x direction. We can perform a Fourier
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FIG. 11. (Color online) Real-space distribution of the up (left)

and down (right) component of the HDWF associated with spin

moment rotations. Red balls refer to those moments n̂2 which rotate

with λ, and blue balls represent the positions of the fixed moments

n̂1. Black lines indicate contours of constant function value. The

functions were plotted using the program XCRYSDEN (Ref. [35]).

transformation of this spin part:

(

W↑(ξ )

W↓(ξ )

)

=
∑

λ

(

ei λ
2

−e−i λ
2

)

ei λ
2
ξ eiφλ =

∑

λ

(

eiλ( ξ

2
+ 1

2
)+iφλ

−eiλ( ξ

2
− 1

2
)+iφλ

)

,

(80)

where the phases ei λ
2
ξ guarantee the orthogonality, and the

gauge freedom is represented by φλ. It follows that W↑(ξ −
2) = −W↓(ξ ). Consequently, the components of the spinor
are opposite in sign and additionally shifted by two lattice
constants in ξ space.

D. Mixed Berry curvature

Recently, the mixed Berry curvature in (k,m̂) space has
been found to be important for spin-orbit torques, for the
Dzyaloshinskii-Moriya interaction and for the charge of
skyrmions [9,10,12,14]. This mixed Berry curvature is given
by

�n
ij (k,m̂) = −2êi ·

(

m̂ × ℑ
〈

∂u
gl

km̂n

∂m̂

∣

∣

∣

∣

∂u
gl

km̂n

∂kj

〉)

, (81)

where i and j are Cartesian directions and êi is the unit vector
in the ith Cartesian direction. If an electric field E is applied
to a ferromagnet with broken inversion symmetry, the torque

T = −
1

Nk

∑

kn

∑

ij

e�n
ij (k,m̂)êiEj (82)

acts on the magnetization due to the mixed Berry
curvature �n

ij (k,m̂) [9,10]. Using spherical coordinates
to express the magnetization direction such that m̂ =
(sin θ cos φ, sin θ sin φ, cos θ ), we can rewrite Eq. (81) as

�n
ij (k,θ,φ) = −2êi ·

(

êφℑ
〈

∂u
gl

kθφn

∂θ

∣

∣

∣

∣

∂u
gl

kθφn

∂kj

〉

− êθ

1

sin θ
ℑ
〈

∂u
gl

kθφn

∂φ

∣

∣

∣

∣

∂u
gl

kθφn

∂kj

〉)

. (83)

If we construct HDWFs for the Hamiltonian H (k,θ,φ), we can
use the generalized Wannier interpolation in order to evaluate
Eq. (83). In Sec. V, we demonstrated that HDWFs can be
constructed for H (k,θ). It is straightforward to extend the
scheme of Sec. V to allow for variation of both θ and φ.
How to obtain the derivative |∂ukn/∂kj 〉 from the standard
MLWF interpolation is discussed in detail in Ref. [2]. The

above derivatives |∂u
gl

kθφn/∂kj 〉, |∂u
gl

kθφn/∂θ〉, and |∂u
gl

kθφn/∂φ〉
are calculated in the HDWF-interpolation scheme in a similar
way. We suppress the superscript “gl” in the following.

The periodic parts of the Bloch-like functions are obtained
from the HDWFs by Fourier transformation:

|ϕ̃kθφn〉 = |ũkθφnρθφ〉

=
∑

R

∑

	θ 	φ

e−ik·(r−R)e−iθ(ξθ −	θ )

× e−iφ(ξφ−	φ )|WR	θ 	φn〉. (84)

In order to acquire the periodic parts of the eigenfunctions of
H (k,θ,φ) [cf. Eq. (40)], we need to apply an additional unitary
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matrix V (k,θ,φ) [cf. Eq. (41)]

|ϕkθφn〉 =
∑

m

|ϕ̃kθφm〉V (k,θ,φ)
mn = |ukθφnρθφ〉, (85)

where |ukθφn〉 =
∑

m |ũkθφm〉V (k,θ,φ)
mn . Accordingly, the θ

derivative of the latter is given by

∣

∣

∣

∣

∂ukθφn

∂θ

〉

=
∑

m

∣

∣

∣

∣

∂ũkθφm

∂θ

〉

V (k,θ,φ)
mn +

∑

m

|ukθφm〉D(k,θ,φ)
mn ,

(86)

where the derivative of the unitary transformation is written as
∂V (k,θ,φ)/∂θ = V (k,θ,φ)D(k,θ,φ). Introducing the abbreviations
λ = (θ,φ), ξ = (ξθ ,ξφ), and � = (	θ ,	φ), we can use for the
first term that

〈

ũkθφn

∣

∣

∣

∣

∂ũkθφm

∂θ

〉

=
∑

R�

∑

R′�′

eik·(R−R′)eiλ·(�−�′)

×〈WR′�′n| [−i(ξθ − 	θ )] |WR�m〉

= −i
∑

R�

∑

R′�′

eik·(R−R′)eiλ·(�−�′)

×〈WR′�′n|ξθ |WR�m〉, (87)

which follows from Eq. (84) and 〈ρλ |∇λρλ 〉 = 0. The matrix
elements 〈WR′�′n|ξθ |WR�m〉 can be computed by generalizing
Eq. (27):

〈WR′�′n|ξ |WR�m〉

=
i

NkNλ

∑

kλ

e−ik·(R−R′)e−iλ·(�−�′)〈ũkλn|∇λ|ũkλm〉. (88)

Similar off-diagonal matrix elements are available in the
WANNIER90 code for the case of standard MLWFs. They are
obtained by approximating the gradient by finite differences
[22]:

〈W0n|r|WRm〉 =
i

Nk

∑

kb

e−ik·Rwbb
(

M (k,b)
nm − δnm

)

. (89)

It is straightforward to generalize Eq. (89) for the HDWF case
based on the overlaps in Eq. (34) and Eq. (35). For the second
term in Eq. (86), we can use [2]

D(k,θ,φ)
mn =











〈

ϕkθφm

∣

∣

∣

∂H (k,θ,φ)

∂θ

∣

∣

∣ϕkθφn

〉

Ekθφn−Ekθφm
if n �= m

0 if n = m

, (90)

which can be evaluated for any (k,θ,φ) from generalized Wan-

nier interpolation. Analogously, the derivatives |∂ukθφn/∂kj 〉
and |∂ukθφn/∂φ〉 are constructed within the formalism of
HDWFs.

VII. SUMMARY

We introduce the concept and formalism of higher-
dimensional Wannier functions (HDWFs) to describe the
electronic structure of multiparameter Hamiltonians H (k,λ),
where λ is an external periodic parameter. The introduction
of an auxiliary space ξ solves the fundamental problem

of nonorthogonality of usual Bloch states in such a situa-
tion. Analogously to maximally localized Wannier functions,
we define HDWFs as Fourier transformations of higher-
dimensional product states carrying a dependence on k and
λ. A minimal and accurate interpolation of multiparameter
Hamiltonians is established using HDWFs. The implementa-
tion of the necessary machinery for the construction of HDWFs
from ab initio within the FLAPW method is discussed. In order
to achieve a maximal localization in the extended space of r

and ξ , we adapt the WANNIER90 program.
The application of the formalism to a one-dimensional Mn

chain with the spin-spiral vector as an external parameter
reveals an excellent agreement with direct first-principles cal-
culations, and enables the simplified extraction of Heisenberg
exchange constants and spin stiffness. Treating the direction of
the ferromagnetic magnetization in real space as an external
parameter, we are able to apply the HDWFs machinery to
compute the magnetocrystalline anisotropy energy of the
Mn chain. Although the corresponding energy scale is very
small and thus more difficult to capture, HDWFs interpolate
accurately the energy E(θ ) as a function of the magnetization
direction. We outline various physical problems to which
HDWFs could be applied efficiently, e.g., disorder treated
within VCA. We emphasize further the advantages associated
with the evaluation of linear response coefficients such as AHE
and spin torques. A formula for the generalized interpolation of
the ferroelectric polarization along any insulating λ path is pro-
vided. Finally, HDWFs could prove useful in the topological
characterization of complex multiparameter systems as they
allow for the simplified evaluation of mixed Berry curvatures.
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APPENDIX A: DETAILS ON THE FLAPW

IMPLEMENTATION

Expressions for the overlaps M (k,b)
mn between periodic parts

of the Bloch states at neighboring crystal momenta and
projections A(k)

mn were already derived for an implementation
of MLWFs within FLAPW [27]. The evaluation of Eq. (35)
requires additionally the construction of the overlaps

M(q,b)
mn (k) =

∑

σ

〈

uσ
kqm

∣

∣uσ
k q+b n

〉

(A1)

with the vector b = bb̂ connecting the two q points, and σ =
↑,↓. Because of the real-space partition into muffin tin spheres
(MT) and the interstitial region (INT), these matrix elements
decompose:

M(q,b)
mn (k) = M(q,b)

mn (k)
∣

∣

INT
+
∑

µ

M(q,b)
mn (k)

∣

∣

MTµ
. (A2)

Here, µ labels the different atoms in the unit cell. Further
contributions arise in film calculations (cf. Appendix B), the
study of one-dimensional geometries (cf. Appendix C), and
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when the FLAPW basis set is supplemented with local orbitals.
Due to the generalized Bloch theorem, Eq. (45), the overlaps
in Eq. (A1) can be rewritten:

M(q,b)
mn (k) =

∑

σ

∫

e±i b
2
·r (�σ

kqm(r))∗�σ
k [q+b] n(r) dr, (A3)

where the upper (lower) sign is associated with the up-spin
(down-spin) of the Bloch states. The expression [q] refers
to a backfolding of the momentum q into the first BZ by
the subtraction of a reciprocal lattice vector G(q), namely,
[q] = q − G(q). As a consequence of the doubled BZ of q

points, G(q) is twice as large as a usual reciprocal lattice
vector [see also remark below Eq. (45)].

Within the muffin tin sphere centered around the µth atom,
which is located at the position τµ, plane waves do not succeed
in describing the physics in presence of the singular atomic
potential. Thus the Bloch states are expanded in terms of radial
solutions ul of the scalar relativistic equation at band-averaged
energies, related derivatives with respect to energy u̇l , and the
spherical harmonics YL where L = (l,lz) represents the set
of angular momentum quantum numbers. Accordingly, the
single-particle wave function is given by

�σ
kqn(r) =

∑

L

[

a
µ,σ

Ln (k,q)u
µ,σ

l (rµ)

+ b
µ,σ

Ln (k,q)u̇
µ,σ

l (rµ)
]

YL(r̂µ). (A4)

Here, a
µ,σ

Ln and b
µ,σ

Ln are expansion coefficients in the µth
muffin tin and the position relative to the nucleus is denoted
as rµ = r − τµ. If we employ the Rayleigh expansion

e∓ib·r = 4πe∓ib·τµ

∑

L

(∓1)li ljl(rµb)YL(b̂)(YL(r̂µ))∗ (A5)

of the plane-wave factor in Eq. (A3) into spherical harmonics,
the muffin tin contribution to the overlaps between periodic
parts assumes the form

M(q,b)
mn (k)

∣

∣

MTµ
= 4π

∑

σ

e±i b
2
·τµ

×
∑

LL′

[(

a
µ,σ

Lm (k,q)
)∗

a
µ,σ

L′n (k, [q+b])t
µ,LL′

11 (b,σ )

+
(

a
µ,σ

Lm (k,q)
)∗

b
µ,σ

L′n (k, [q + b])t
µ,LL′

12 (b,σ )

+
(

b
µ,σ

Lm (k,q)
)∗

a
µ,σ

L′n (k, [q + b])t
µ,LL′

21 (b,σ )

+
(

b
µ,σ

Lm (k,q)
)∗

b
µ,σ

L′n (k, [q + b])t
µ,LL′

22 (b,σ )
]

. (A6)

Here, the radial solutions, their energy derivatives, and the
spherical Bessel functions jl enter through the t coefficients
defined as

t
µ,L′′L
11 (b,σ ) =

∑

L′

GLL′L′′ (b̂)

∫

r2
µ jl′

(

rµb

2

)

× u
µ,σ

l (rµ)u
µ,σ

l′′ (rµ) drµ, (A7)

t
µ,L′′L
12 (b,σ ) =

∑

L′

GLL′L′′ (b̂)

∫

r2
µ jl′

(

rµb

2

)

× u̇
µ,σ

l (rµ)u
µ,σ

l′′ (rµ) drµ, (A8)

and likewise for t21 and t22. If we choose a uniform Monkhorst-
Pack grid to sample the BZ of spin-spiral parameters, the above
integrals become independent of the q point such that they
may be calculated once and for all at the very beginning. The
abbreviation

GLL′L′′(b̂) = i l
′
(±1)l

′
YL′(b̂)GLL′L′′ (A9)

incorporates the Gaunt coefficients GLL′L′′ , which are given
by

GLL′L′′ =
∫

YL(r̂µ)(YL′(r̂µ))∗(YL′′ (r̂µ))∗ d�. (A10)

The expressions above are easily extended when local orbitals
are employed in the basis set.

In FLAPW, the Bloch states are expanded using plane-
waves with reciprocal lattice vectors G in the interstitial
region. Thus the wave function assumes a form in line with
the generalized Bloch theorem:

�σ
kqn(r) =

1
√

V

∑

G

cσ
G(k,q,n)ei(k∓ q

2
+G)·r . (A11)

Defining the Fourier transformation of the step function �INT

cutting out the interstitial region by

�G =
1

V

∫

INT

e−iG·r dr =
1

V

∫

e−iG·r �INT(r) dr, (A12)

we can write the interstitial contribution to the overlap
elements of the periodic parts at neighboring spin-spiral
parameters, Eq. (A3), as

M(q,b)
mn (k)

∣

∣

INT

=
∑

GG′σ

(

cσ
G(k,q,m)

)∗
cσ

G′(k, [q + b] ,n)�∓ G(q+b)
2

+G−G′ .

(A13)

The shapes of the overlaps (A6) and (A13) differ slightly
from those of the M (k,b)

mn contributions described in Ref. [27].
First, the expansion coefficients carry a new dependence on the
spin-spiral vector q. An additional spin-dependent sign arises
from the generalized Bloch theorem in Eqs. (A6), (A9), and
(A13). Finally, the vectors b and G(q + b) occur both with a
factor of 1/2 in Eqs. (A6) and (A13), and the definition of the
t integrals.

To construct first-guess HDWFs, the projections of the
Bloch states onto localized trial orbitals gn have to be
evaluated within FLAPW according to Eq. (37). These trial
orbitals are chosen to be zero everywhere except for the
µth muffin tin sphere to which the corresponding first-
guess should be associated. The expansion coefficients in
gn(r) =

∑

L cLnũl(rµ)YL(r̂µ) control the angular character
of the trial functions [27]. The radial function ũl can be
chosen, for example, as the first principles solution u

µ

l to the
radial Schrödinger equation. Then, projections 〈�kqm|gn〉 are
computed according to

∑

Lσ

[

(

a
µ,σ

Lm (k,q)
)∗

cσ
Ln

∫

r2
µ u

µ,σ

l (rµ)ũσ
l (rµ) drµ

+
(

b
µ,σ

Lm (k,q)
)∗

cσ
Ln

∫

r2
µ u̇

µ,σ

l (rµ)ũσ
l (rµ) drµ

]

(A14)
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if the orthogonality of the spherical harmonics is exploited.
Except for the q dependence of the expansion coefficients,
these expressions are similar to those described in Ref. [27]
for standard MLWFs.

APPENDIX B: VACUUM CONTRIBUTION TO THE

OVERLAPS M
(q,b)
mn (k) IN FILM CALCULATIONS

In the study of two-dimensional geometries using the
film implementation of the FLEUR program, an additional
contribution to the matrix elements in Eq. (A3) occurs as a
consequence of the presence of two semi-infinite vacua [50].
The Bloch states in each of the vacua, which extend from −∞
to −D/2 as well as D/2 to ∞, are represented by

�σ
k‖q‖n

(r) =
∑

G‖

ψ
n,σ
G‖

(k‖,q‖,z)ei(k‖∓
q‖
2

+G‖)·r . (B1)

Here, k‖ and q‖ are both considered to lie within an according
two-dimensional BZ associated with the film plane, which is
supposed to be perpendicular to the z axis. The function

ψ
n,σ
G‖

(k‖,q‖,z) = aσ
G‖n

(k‖,q‖)uσ
G‖

(k‖,q‖,z)

+ bσ
G‖n

(k‖,q‖)u̇σ
G‖

(k‖,q‖,z) (B2)

includes the one-dimensional solutions of the Schrödinger
equation in the corresponding vacuum region uG‖ and their
energy derivatives u̇G‖ . For convenience, the abbreviations

β
mn,σ

G‖G′
‖
(k‖,q‖,[q‖ + b],z)

=
(

ψ
m,σ
G‖

(k‖,q‖,z)
)∗

ψ
n,σ

G′
‖

(k‖,[q‖ + b],z) (B3)

and G‖ = G‖ − G′
‖ ∓ G‖(q‖ + b)/2 are introduced. Conse-

quently, the contribution of the vacuum extending from D/2
to ∞ to the overlap matrix elements between periodic parts,
Eq. (A3), evaluates to

M
(q‖,b)
mn (k‖)

∣

∣

FILM
=
∑

σ

∑

G‖G′
‖

S‖ δG‖

∫ ∞

D/2

e±i
Gz (q‖+b)

2
z

×β
mn,σ

G‖G′
‖
(k‖,q‖,[q‖ + b],z) dz, (B4)

where the unit cell area with respect to the film plane is denoted
as S‖. The other contribution from the second vacuum region is
derived analogously. Compared to the contribution to the usual
overlaps M (k,b)

mn , Ref. [27], the function ψ
n,σ
G‖

of Eq. (B2) carries

a dependence on q‖. Additionally, the reciprocal lattice vector
G(q‖ + b) occurs with a spin-dependent sign and a factor of
1/2 in the definition of G‖ and Eq. (B4).

APPENDIX C: VACUUM CONTRIBUTION TO THE

OVERLAPS M
(q,b)
mn (k) IN ONE-DIMENSIONAL

CALCULATIONS

The density functional theory code FLEUR treats one-
dimensional systems as cylinders with radius Rvac embedded in
surrounding vacuum [30]. The cylinder axis points along the
z direction. Using cylindrical coordinates in real space r =
(z,r,φ) and reciprocal space G = (Gz,Gr ,Gφ), we express the

single-particle wave function in the vacuum as

�σ
kzqzn

(r) =
∑

P

ψ
n,σ
P (kz,qz,r)eipφei(kz∓ qz

2
+Gz)z, (C1)

where kz as well as qz are drawn from a one-dimensional BZ,
and the integer p labels the cylindrical angular harmonics.
The variable P denotes the set of (Gz,p) with respect to
which the summation is performed. Radial solutions uP to
the Schrödinger equation in the vacuum region and related
energy derivatives u̇P enter the expression through

ψ
n,σ
P (kz,qz,r) = a

n,σ
P (kz,qz)u

σ
P (kz,qz,r)

+ b
n,σ
P (kz,qz)u̇

σ
P (kz,qz,r). (C2)

For convenience, the abbreviations

β
mn,σ
PP ′ (kz,qz,[qz + b],r)

=
(

ψ
m,σ
P (kz,qz,r)

)∗
ψ

n,σ
P ′ (kz, [qz + b] ,r) (C3)

and Gz = Gz − G′
z ∓ Gz(qz + b)/2 are introduced such that

the corresponding overlap elements, Eq. (A3), associated with
the presence of the vacuum assume the form

M(qz,b)
mn (kz)

∣

∣

OD
=
∑

σ

∑

PP ′

∫

VAC

β
mn,σ
PP ′ (kz,qz,[qz + b],r)

× e−iGzz e±i
G‖ (qz+b)

2
·r‖ ei(p′−p)φ dr. (C4)

Here, r‖ shall refer to the x and y components of the real-space
vector r = (r‖,z) and similar for the reciprocal lattice vector
G‖(qz + b), which shifts the momentum back into the first
BZ. Exploiting then the plane-wave expansion into cylindrical
coordinates

e∓iG·r = e∓iGzz
∑

p

ip(∓1)pe∓ip(φ−φG )Jp(Grr), (C5)

we arrive finally at the vacuum contribution to the overlaps
of periodic parts at neighboring q, Eq. (A3), in case of
one-dimensional calculations:

M(qz,b)
mn (kz)

∣

∣

OD
=
∑

σ

∑

PP ′

(∓1)p
′−p ip−p′

ei(p′−p)φG(qz+b)

× ℓ δGz

∫ ∞

Rvac

rJp′−p

(

Gr (qz + b)r

2

)

×β
mn,σ
PP ′ (kz,qz,[qz + b],r) dr. (C6)

Here, Jp represents the cylindrical Bessel function of order
p, and ℓ = 2πT with the lattice constant T along the axis
of translational invariance. In contrast to the implementation
of the usual overlaps M (k,b)

mn , Ref. [27], a spin-dependent sign
arises from the generalized Bloch theorem in Eq. (C6). The
lattice vector G(qz + b) occurs further with an additional
factor 1/2 in the argument of the cylindrical Bessel function,
and the definition of Gz.

APPENDIX D: CALCULATION OF M(θ,b)
mn (k)

WITHIN FLAPW

Knowledge of the overlaps between periodic parts of the
Bloch states at neighboring angles θ and θ + b is required to
construct HDWFs when the magnetization direction plays the
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role of the additional external parameter. Within the second-
variation scheme [38] used in this work, the spin quantization
axis of the wave functions is identical to the magnetization
direction, which we characterize by an angle θ . Using the
rotation

χ (θ ) =

(

cos θ
2

− sin θ
2

sin θ
2

cos θ
2

)

, (D1)

we transform therefore all wave functions to the very same
global frame in order to evaluate the overlaps

M(θ,b)
mn (k) =

∑

σ

〈

u
σ,gl

kθm

∣

∣u
σ,gl

k θ+b n

〉

=
∑

σσ ′

[χ †(θ )χ (θ + b)]σσ ′〈uσ
kθm|uσ ′

k θ+b n〉. (D2)

Here, the periodic part ukθn in the local coordinate frame was

transformed to the global one by u
gl

kθn = χ (θ )ukθn, and σ =
↑,↓. Keeping in mind Eq. (D2), we present in the following
the necessary FLAPW expressions for the calculation of the
overlaps in the local spin frame.

The standard expansion of the wave function into plane
waves is used in the interstitial region with the expansion
coefficients carrying now a dependence on the angle θ :

�σ
kθn(r) =

1
√

V

∑

G

cσ
G(k,θ,n)ei(k+G)·r . (D3)

Thus the overlaps of lattice periodic parts in the local
coordinate frame, Eq. (66), assume the form

〈

uσ
kθm

∣

∣uσ ′

k θ+b n

〉∣

∣

INT

=
∑

GG′

(

cσ
G(k,θ,m)

)∗
cσ ′

G′(k, [θ + b] ,n)�G−G′ , (D4)

where �G has been defined in Eq. (A12). Compared to the
implementation of the usual overlaps M (k,b)

mn , Ref. [27], only
reciprocal lattice vectors G and G′ enter �G above. Thus we
can arrive at the shape of the above overlaps by formally setting
G(q + b) to zero in Eq. (A13).

In contrast to Eq. (A4), the coefficients of the expansion of
the muffin tin wave functions depend on θ . Accordingly, the
Bloch state in the local spin-coordinate frame is given as

�σ
kθn(r)

∣

∣

MTµ
=
∑

L

[

a
µ,σ

Ln (k,θ )u
µ,σ

l (rµ)

+ b
µ,σ

Ln (k,θ )u̇
µ,σ

l (rµ)
]

YL(r̂µ), (D5)

where L stands for the set of angular momentum quantum
numbers (l,lz). The overlaps between the lattice periodic parts,
Eq. (66), are evaluated using the orthogonality of the spherical
harmonics to yield

〈

uσ
kθm

∣

∣uσ ′

k θ+b n

〉∣

∣

MTµ

=
∑

L

[(

a
µ,σ

Lm (k,θ )
)∗

a
µ,σ ′

Ln (k, [θ + b])t
µ,L

11 (σ,σ ′)

+
(

a
µ,σ

Lm (k,θ )
)∗

b
µ,σ ′

Ln (k, [θ + b])t
µ,L

12 (σ,σ ′)

+
(

b
µ,σ

Lm (k,θ )
)∗

a
µ,σ ′

Ln (k, [θ + b])t
µ,L

21 (σ,σ ′)

+
(

b
µ,σ

Lm (k,θ )
)∗

b
µ,σ ′

Ln (k, [θ + b])t
µ,L

22 (σ,σ ′)
]

, (D6)

where the coefficients tij represent integrals of the radial
solutions and their energy derivatives:

t
µ,L

11 (σ,σ ′) =
∫

r2
µ u

µ,σ

l (rµ)u
µ,σ ′

l (rµ) drµ, (D7)

t
µ,L

12 (σ,σ ′) =
∫

r2
µ u

µ,σ

l (rµ)u̇
µ,σ ′

l (rµ) drµ, (D8)

and likewise for t21 and t22. Compared to Appendix A or
the implementation of the usual overlaps M (k,b)

mn , Ref. [27], the
above t integrals are simplified as they do not contain the Gaunt

coefficients. Formally, we can obtain, for example, t
µ,L

11 (σ,σ )
from Eq. (A7) when setting b to zero.

If we consider the application to the one-dimensional
magnetic chain discussed in the main text, an additional
contribution arises due to the presence of the vacuum (cf.
Appendix C). The wave function is expanded in the vacuum
region as

�σ
kzθn(r) =

∑

P

ψ
n,σ
P (kz,θ,r)eipφei(kz+Gz)z, (D9)

with P = (Gz,p) representing the set of the integer p and the
plane-wave vector Gz, and further

ψ
n,σ
P (kz,θ,r) = a

n,σ
P (kz,θ )uσ

P (kz,r)

+ b
n,σ
P (kz,θ )u̇σ

P (kz,r). (D10)

Here, uP and u̇P refer to the radial solutions of the Schrödinger
equation in the vacuum region and their energy derivatives, re-
spectively. Consequently, the vacuum contribution to overlaps
of the periodic parts in the local frame, Eq. (66), assumes the
form

〈

uσ
kθm

∣

∣uσ ′

k θ+b n

〉∣

∣

OD
= ℓ

∑

P

∫ ∞

Rvac

r
(

ψ
m,σ
P (kz,θ,r)

)∗

×ψ
n,σ ′

P (kz, [θ + b] ,r) dr, (D11)

where ℓ = 2πT with T as lattice constant measured along
the z direction, and Rvac is the radius of the one-dimensional
geometry under consideration. Unlike the case of the usual
overlaps M (k,b)

mn , Ref. [27], no cylindrical Bessel function
occurs in the above radial integrals. The formal shape of
such overlaps can therefore be obtained by considering
G(qz + b) = 0 in Eq. (C6).

APPENDIX E: DERIVATIVES OF THE

MULTIPARAMETER HAMILTONIAN WITH

RESPECT TO THE ADDITIONAL PARAMETER λ

The Wannier interpolation scheme provides an elegant
means of performing analytically crystal momentum deriva-
tives of the Hamiltonian, which enter the calculation of
properties such as the AHE or other transport coefficients
[2,3,36,37]. We are able to compute analogously derivatives
of the multiparameter Hamiltonian H (k,λ) with respect to an
additional external parameter λ, starting from Eq. (40) of the
generalized Wannier interpolation:

∂H

∂λα

=
∑

R�

i	αeik·Reiλ·�H (R,�) (E1)
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and

∂2H

∂λα∂λβ

= −
∑

R�

	α	βeik·Reiλ·�H (R,�), (E2)

where H (R,�) is the matrix of the hopping elements
Hnm(R,�) between HDWFs, and λα and 	α refer to the αth
components of the vectors λ and �, respectively. To simplify
notation, we suppress the explicit dependence of H (k,λ) on k

and λ here and in the following. The above equations may be
particularly fruitful in accessing accurately Berry connections
and curvatures.

We employ such expressions to determine the first and
second derivatives of the energy E(λ) with respect to the
external parameter λ. Based on the Fermi-Dirac distribution
function f (y) with y = EF (λ) − Ekλn, the energy of the
system is defined by

E(λ) =
1

Nk

∑

kn

Ekλnf (y), (E3)

with the Fermi energy EF (λ), and it follows that

∂αE(λ) =
1

Nk

∑

kn

[∂αEkλnf (y) + Ekλn∂αf (y)] (E4)

and

∂α∂βE(λ) =
1

Nk

∑

kn

[∂α∂βEkλnf (y) + Ekλn∂α∂βf (y)

+ ∂αEkqn∂βf (y) + ∂βEkqn∂αf (y)], (E5)

where the notation ∂α = ∂/∂λα was introduced. We can
obtain the derivatives of the band energies, which enter these
equations, by using Eqs. (E1) and (E2):

∂αEkλn = 〈ϕkλn|∂αH |ϕkλn〉 (E6)

and

∂α∂βEkλn = 〈ϕkλn|∂α∂βH |ϕkλn〉

+ 2ℜ
∑

m�=n

〈ϕkλn|∂αH |ϕkλm〉〈ϕkλm|∂βH |ϕkλn〉
Ekλn − Ekλm

,

(E7)

where the second contribution can be derived from first-order
pertubation theory. The states |ϕkλn〉 are the eigenvectors of
the multiparameter Hamiltonian H (k,λ). Evaluating ∂αf and
∂α∂βf in Eqs. (E4) and (E5) requires knowledge of the
derivatives of the Fermi energy EF (λ). To obtain analytically
the necessary information, we invoke the total number of
electrons in the system, N (λ) = N−1

k

∑

kn f (y), which is a

constant, i.e., ∂αN (λ) = 0. The first derivatives of the Fermi
energy are accordingly given by

∂αEF (λ) =

[

∑

kn

∂f (y)

∂y

]−1
∑

kn

∂f (y)

∂y
∂αEkλn, (E8)

where the term
∑

kn ∂f (y)/∂y is a measure for the density of
states at the Fermi level. The second derivatives of the Fermi
energy assume the form

∂α∂βEF (λ) =

[

∑

kn

∂f (y)

∂y

]−1
∑

kn

[

∂f (y)

∂y
∂α∂βEkλn

−
∂2f (y)

∂y2
(∂αEF (λ) − ∂αEkλn)

× (∂βEF (λ) − ∂βEkλn)

]

, (E9)

which is easily found from the condition ∂α∂βN (λ) = 0.
At zero temperature, Eqs. (E4) and (E5) simplify. From the

condition ∂αN (λ) = 0 follows that

∂αE(λ) =
1

Nk

∑

kn

f (y)∂αEkλn

=
1

Nk

∑

kn

�(y) 〈ϕkλn|∂αH |ϕkλn〉 , (E10)

with Heaviside step function �(y). Likewise, we obtain

∂α∂βE(λ) =
1

Nk

∑

kn

(f (y)∂α∂βEkλn + ∂αf (y)∂βEkλn)

=
1

Nk

∑

kn

�(y)

(

〈ϕkλn|∂α∂βH |ϕkλn〉 + 2ℜ
∑

m�=n

×
〈ϕkλn|∂αH |ϕkλm〉 〈ϕkλm|∂βH |ϕkλn〉

Ekλn − Ekλm

)

+
1

Nk

×
∑

kn

δ(y) (∂αEF (λ)−∂αEkλn) 〈ϕkλn|∂βH |ϕkλn〉.

(E11)

To calculate accurately the derivatives of the energy E(λ)
given by Eqs. (E4) and (E5), we implement the above
scheme based on the hoppings. We are able to derive from
generalized Wannier interpolation basic properties of the
system, for example, the spin stiffness or the anisotropy
constant.
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[10] F. Freimuth, S. Blügel, and Y. Mokrousov, Phys. Rev. B 90,

174423 (2014).

[11] K. Garello, I. M. Miron, C. O. Avci, F. Freimuth, Y. Mokrousov,
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