000200908 001__ 200908
000200908 005__ 20240711085553.0
000200908 0247_ $$2doi$$a10.1016/j.seppur.2015.02.026
000200908 0247_ $$2ISSN$$a1383-5866
000200908 0247_ $$2ISSN$$a1873-3794
000200908 0247_ $$2WOS$$aWOS:000356553300043
000200908 037__ $$aFZJ-2015-03261
000200908 041__ $$aEnglish
000200908 082__ $$a540
000200908 1001_ $$0P:(DE-HGF)0$$aSchmeda-Lopez, Diego R.$$b0
000200908 245__ $$aStainless steel hollow fibres – Sintering, morphology and mechanical properties
000200908 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2015
000200908 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1432802551_31097
000200908 3367_ $$2DataCite$$aOutput Types/Journal article
000200908 3367_ $$00$$2EndNote$$aJournal Article
000200908 3367_ $$2BibTeX$$aARTICLE
000200908 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000200908 3367_ $$2DRIVER$$aarticle
000200908 520__ $$aThis work investigates the effects of the sintering conditions on the morphology and mechanical performance of stainless steel (SS) hollow fibres. It was found that the morphology of the green hollow fibre to a large extent predetermines the final morphology of the sintered hollow fibre. There is a set of conditions which produce hollow fibres with high mechanical strength over 1000 MPa such as using small SS particles (6 and 10 μm), PEI as the polymeric binder and minimal amounts of the viscosity modifier PVP (preferably close to 0 wt%), particle loadings higher than 50 wt%, and sintering temperatures between 1050 and 1100 °C. The ductility of the hollow fibres was not greatly affected by these parameters as flexural strain variations were very small, though sintering in argon resulted in the formation of a few larger pores which tended to propagate cracks, leading to lower flexural strain. The sintering process in inert gases resulted in mass transfer of residual carbon from the binder to the SS particle, leading to regions of rich and lean chromium carbides, though mechanical effects of these inclusions were not significant. Finally, the morphology played a major role as SS hollow fibres containing a higher volume of sponge-like region were mechanically stronger than the analogous fibres dominated by finger-like and macroporous regions.
000200908 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000200908 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000200908 7001_ $$0P:(DE-HGF)0$$aSmart, Simon$$b1
000200908 7001_ $$0P:(DE-HGF)0$$aNunes, Eduardo H. M.$$b2
000200908 7001_ $$0P:(DE-HGF)0$$aVasconcelos, Daniela$$b3
000200908 7001_ $$0P:(DE-HGF)0$$aVasconcelos, Wander L.$$b4
000200908 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b5$$ufzj
000200908 7001_ $$0P:(DE-Juel1)129637$$aMeulenberg, Wilhelm A.$$b6$$ufzj
000200908 7001_ $$0P:(DE-HGF)0$$aDiniz da Costa, João C.$$b7$$eCorresponding Author
000200908 773__ $$0PERI:(DE-600)2022535-0$$a10.1016/j.seppur.2015.02.026$$gVol. 147, p. 379 - 387$$p379 - 387$$tSeparation and purification technology$$v147$$x1383-5866$$y2015
000200908 8564_ $$uhttps://juser.fz-juelich.de/record/200908/files/1-s2.0-S1383586615001112-main.pdf$$yRestricted
000200908 8564_ $$uhttps://juser.fz-juelich.de/record/200908/files/1-s2.0-S1383586615001112-main.gif?subformat=icon$$xicon$$yRestricted
000200908 8564_ $$uhttps://juser.fz-juelich.de/record/200908/files/1-s2.0-S1383586615001112-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000200908 8564_ $$uhttps://juser.fz-juelich.de/record/200908/files/1-s2.0-S1383586615001112-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000200908 8564_ $$uhttps://juser.fz-juelich.de/record/200908/files/1-s2.0-S1383586615001112-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000200908 8564_ $$uhttps://juser.fz-juelich.de/record/200908/files/1-s2.0-S1383586615001112-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000200908 909CO $$ooai:juser.fz-juelich.de:200908$$pVDB
000200908 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000200908 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129637$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000200908 9130_ $$0G:(DE-HGF)POF2-122$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vPower Plants$$x0
000200908 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000200908 9141_ $$y2015
000200908 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000200908 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000200908 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000200908 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000200908 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000200908 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000200908 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000200908 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000200908 980__ $$ajournal
000200908 980__ $$aVDB
000200908 980__ $$aI:(DE-Juel1)IEK-1-20101013
000200908 980__ $$aUNRESTRICTED
000200908 981__ $$aI:(DE-Juel1)IMD-2-20101013