000200909 001__ 200909
000200909 005__ 20240711085557.0
000200909 0247_ $$2doi$$a10.1016/j.seppur.2014.12.020
000200909 0247_ $$2ISSN$$a1383-5866
000200909 0247_ $$2ISSN$$a1873-3794
000200909 0247_ $$2WOS$$aWOS:000356553300047
000200909 037__ $$aFZJ-2015-03262
000200909 082__ $$a540
000200909 1001_ $$0P:(DE-Juel1)129660$$aSchulze-Küppers, F.$$b0$$ufzj
000200909 245__ $$aStructural and functional properties of SrTi$_{1−x}$Fe$_{x}$O$_{3−δ}$ (0⩽x⩽1) for the use as oxygen transport membrane
000200909 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2015
000200909 3367_ $$2DRIVER$$aarticle
000200909 3367_ $$2DataCite$$aOutput Types/Journal article
000200909 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1466148994_27124
000200909 3367_ $$2BibTeX$$aARTICLE
000200909 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000200909 3367_ $$00$$2EndNote$$aJournal Article
000200909 520__ $$aPerovskitic oxides are widely investigated as oxygen transport membrane materials for the efficient generation of pure oxygen or the use in membrane reactors. However, most of high performance perovskites suffer from low stability in operation conditions. Therefore, solid solutions of SrTi1−xFexO3−δ (STF) are investigated due to the initial high stability of the strontium titanate host lattice. Self-synthesized powders with substitution of Ti by 0%, 25%, 35%, 50%, 75%, and 100% Fe were studied. Crystal structure, functional properties i.e., diffusion coefficient, surface exchange rates, and oxygen permeation rates as well as membrane fabrication and operation related material properties i.e. sintering behaviour and thermal/chemical expansion were investigated. Substitution of Ti by Fe increases oxygen mobility and, hence, oxygen permeation rates, but reduces stability in operation relevant atmospheres such as Ar/4%H2 or CO2. At the same time thermal/chemical expansion increases. This makes the fabrication of supported thin membranes and their integration into membrane modules more challenging. It turned out that 25–35% Fe substituting Ti seems to be a good compromise between structural and functional properties. Oxygen permeation rates achieved are comparable to that of standard materials such as La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF). At the same time stability is higher and thermal expansion coefficients lower compared to LSCF, which makes STF with limited Fe-content (max. 35%) a promising oxygen transport membrane material.
000200909 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000200909 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000200909 7001_ $$0P:(DE-HGF)0$$aten Donkelaar, S. F. P.$$b1
000200909 7001_ $$0P:(DE-Juel1)129587$$aBaumann, S.$$b2$$eCorresponding Author$$ufzj
000200909 7001_ $$0P:(DE-Juel1)157940$$aPrigorodov, P.$$b3
000200909 7001_ $$0P:(DE-Juel1)159368$$aSohn, Y. J.$$b4$$ufzj
000200909 7001_ $$0P:(DE-HGF)0$$aBouwmeester, H. J. M.$$b5
000200909 7001_ $$0P:(DE-Juel1)129637$$aMeulenberg, W. A.$$b6$$ufzj
000200909 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b7
000200909 773__ $$0PERI:(DE-600)2022535-0$$a10.1016/j.seppur.2014.12.020$$gVol. 147, p. 414 - 421$$p414 - 421$$tSeparation and purification technology$$v147$$x1383-5866$$y2015
000200909 8564_ $$uhttps://juser.fz-juelich.de/record/200909/files/1-s2.0-S1383586614007655-main.pdf$$yRestricted
000200909 8564_ $$uhttps://juser.fz-juelich.de/record/200909/files/1-s2.0-S1383586614007655-main.gif?subformat=icon$$xicon$$yRestricted
000200909 8564_ $$uhttps://juser.fz-juelich.de/record/200909/files/1-s2.0-S1383586614007655-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000200909 8564_ $$uhttps://juser.fz-juelich.de/record/200909/files/1-s2.0-S1383586614007655-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000200909 8564_ $$uhttps://juser.fz-juelich.de/record/200909/files/1-s2.0-S1383586614007655-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000200909 8564_ $$uhttps://juser.fz-juelich.de/record/200909/files/1-s2.0-S1383586614007655-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000200909 909CO $$ooai:juser.fz-juelich.de:200909$$pVDB
000200909 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000200909 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129587$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000200909 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159368$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000200909 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129637$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000200909 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000200909 9130_ $$0G:(DE-HGF)POF2-122$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vPower Plants$$x0
000200909 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000200909 9141_ $$y2015
000200909 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000200909 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000200909 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000200909 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000200909 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000200909 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000200909 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000200909 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000200909 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000200909 980__ $$ajournal
000200909 980__ $$aVDB
000200909 980__ $$aI:(DE-Juel1)IEK-1-20101013
000200909 980__ $$aI:(DE-82)080011_20140620
000200909 980__ $$aUNRESTRICTED
000200909 981__ $$aI:(DE-Juel1)IMD-2-20101013