001     200909
005     20240711085557.0
024 7 _ |a 10.1016/j.seppur.2014.12.020
|2 doi
024 7 _ |a 1383-5866
|2 ISSN
024 7 _ |a 1873-3794
|2 ISSN
024 7 _ |a WOS:000356553300047
|2 WOS
037 _ _ |a FZJ-2015-03262
082 _ _ |a 540
100 1 _ |a Schulze-Küppers, F.
|0 P:(DE-Juel1)129660
|b 0
|u fzj
245 _ _ |a Structural and functional properties of SrTi$_{1−x}$Fe$_{x}$O$_{3−δ}$ (0⩽x⩽1) for the use as oxygen transport membrane
260 _ _ |a Amsterdam [u.a.]
|c 2015
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1466148994_27124
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Perovskitic oxides are widely investigated as oxygen transport membrane materials for the efficient generation of pure oxygen or the use in membrane reactors. However, most of high performance perovskites suffer from low stability in operation conditions. Therefore, solid solutions of SrTi1−xFexO3−δ (STF) are investigated due to the initial high stability of the strontium titanate host lattice. Self-synthesized powders with substitution of Ti by 0%, 25%, 35%, 50%, 75%, and 100% Fe were studied. Crystal structure, functional properties i.e., diffusion coefficient, surface exchange rates, and oxygen permeation rates as well as membrane fabrication and operation related material properties i.e. sintering behaviour and thermal/chemical expansion were investigated. Substitution of Ti by Fe increases oxygen mobility and, hence, oxygen permeation rates, but reduces stability in operation relevant atmospheres such as Ar/4%H2 or CO2. At the same time thermal/chemical expansion increases. This makes the fabrication of supported thin membranes and their integration into membrane modules more challenging. It turned out that 25–35% Fe substituting Ti seems to be a good compromise between structural and functional properties. Oxygen permeation rates achieved are comparable to that of standard materials such as La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF). At the same time stability is higher and thermal expansion coefficients lower compared to LSCF, which makes STF with limited Fe-content (max. 35%) a promising oxygen transport membrane material.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a ten Donkelaar, S. F. P.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Baumann, S.
|0 P:(DE-Juel1)129587
|b 2
|e Corresponding Author
|u fzj
700 1 _ |a Prigorodov, P.
|0 P:(DE-Juel1)157940
|b 3
700 1 _ |a Sohn, Y. J.
|0 P:(DE-Juel1)159368
|b 4
|u fzj
700 1 _ |a Bouwmeester, H. J. M.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Meulenberg, W. A.
|0 P:(DE-Juel1)129637
|b 6
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 7
773 _ _ |a 10.1016/j.seppur.2014.12.020
|g Vol. 147, p. 414 - 421
|0 PERI:(DE-600)2022535-0
|p 414 - 421
|t Separation and purification technology
|v 147
|y 2015
|x 1383-5866
856 4 _ |u https://juser.fz-juelich.de/record/200909/files/1-s2.0-S1383586614007655-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/200909/files/1-s2.0-S1383586614007655-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/200909/files/1-s2.0-S1383586614007655-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/200909/files/1-s2.0-S1383586614007655-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/200909/files/1-s2.0-S1383586614007655-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/200909/files/1-s2.0-S1383586614007655-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:200909
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)161591
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129587
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)159368
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129637
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)161591
913 0 _ |a DE-HGF
|b Energie
|l Rationelle Energieumwandlung und -nutzung
|1 G:(DE-HGF)POF2-120
|0 G:(DE-HGF)POF2-122
|2 G:(DE-HGF)POF2-100
|v Power Plants
|x 0
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21