000200910 001__ 200910
000200910 005__ 20240712084457.0
000200910 0247_ $$2Handle$$a2128/8976
000200910 0247_ $$2ISSN$$a1866-1793
000200910 020__ $$a978-3-95806-047-0
000200910 037__ $$aFZJ-2015-03263
000200910 041__ $$aEnglish
000200910 1001_ $$0P:(DE-Juel1)138446$$aSiegloch, Max$$b0$$eCorresponding Author$$gmale$$ufzj
000200910 245__ $$aFailure Analysis of Thin Film Solar Modules using Lock-in Thermography$$f2014-12-16
000200910 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2015
000200910 300__ $$aXIII, 131 S.
000200910 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1432811970_29461
000200910 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000200910 3367_ $$02$$2EndNote$$aThesis
000200910 3367_ $$2DRIVER$$adoctoralThesis
000200910 3367_ $$2BibTeX$$aPHDTHESIS
000200910 3367_ $$2DataCite$$aOutput Types/Dissertation
000200910 3367_ $$2ORCID$$aDISSERTATION
000200910 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v258
000200910 502__ $$aRWTH Aachen, Diss., 2014$$bDr.$$cRWTH Aachen$$d2014
000200910 520__ $$aLock-in thermography (LIT) is an imaging method that depicts radiated heat andits diffusion in manifold samples. LIT offers versatile possibilities for the characterization of solar cells and modules since the radiated heat is proportional to the dissipation of electrical power. Up to now, the quantitative correlation of detected heat and dissipated electrical power has been known for silicon solar cells only. For many other types of solar cells and modules – especially thin film solar cells – LIT has been used as aqualitative measurement tool for depicting the location of defects, for example. Thus, the potential of LIT in terms of the calculation of power generation and dissipation in thin film solar cells has not been exploited. This visualization and calculation of power flows leads to a better understanding of the influences of defects on the efficiency of solar modules. Furthermore, it enables the evaluation of potential improvements, which results in solar modules with higher efficiencies, produced to lower costs. In order to interpret LIT signals accurately, the lock-in algorithm and particularly its limits have to be understood. The present thesis shows the evaluation of the lock-in algorithm and its algebraic complex result with simulations. It is found that the weak points of the lock-in algorithm lie in the sampling of the acquired heat signal. Sampling moments that are not uniformly distributed in a lock-in period produce unreliable results. A low sampling at high measurement frequencies shows significant deviations distorting the LIT result. The findings allow for the development of user-friendly LIT systems that automatically avoid sampling errors and produce reliable LIT results. The comprehension of LIT measurements of thin film solar cells needs a theoretical thermal model for the solar cells that can be used to solve the differential heat diffusion equation. The solution describes the surface temperature distribution that is acquired in LIT measurements. By the evaluation of the frequency response of a point heat source in a thin film solar cell, a simple thermal model representing a solid body is found to adequately reproduce LIT measurements. LIT investigations in the scale of the thermal diffusion length are hampered by the diffusion of heat that leads to a blurring of heat sources. With the description of the thermal model and a Fourier transform technique, it is possible to successfully deconvolute the heat generating sources from the heat diffusion, meaning the removal of the thermal blurring. This leads to the unimpeded visualization of the dissipated power of small heat sources such as shunts or the series interconnection of cells in a thin film solar module [...]
000200910 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000200910 650_7 $$xDiss.
000200910 773__ $$y2015
000200910 8564_ $$uhttps://juser.fz-juelich.de/record/200910/files/Energie_Umwelt_258.pdf$$yOpenAccess
000200910 8564_ $$uhttps://juser.fz-juelich.de/record/200910/files/Energie_Umwelt_258.gif?subformat=icon$$xicon$$yOpenAccess
000200910 8564_ $$uhttps://juser.fz-juelich.de/record/200910/files/Energie_Umwelt_258.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000200910 8564_ $$uhttps://juser.fz-juelich.de/record/200910/files/Energie_Umwelt_258.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000200910 8564_ $$uhttps://juser.fz-juelich.de/record/200910/files/Energie_Umwelt_258.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000200910 8564_ $$uhttps://juser.fz-juelich.de/record/200910/files/Energie_Umwelt_258.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000200910 909CO $$ooai:juser.fz-juelich.de:200910$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000200910 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000200910 9141_ $$y2015
000200910 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138446$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000200910 9130_ $$0G:(DE-HGF)POF2-111$$1G:(DE-HGF)POF2-110$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vThin Film Photovoltaics$$x0
000200910 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000200910 920__ $$lyes
000200910 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000200910 9801_ $$aFullTexts
000200910 980__ $$aphd
000200910 980__ $$aVDB
000200910 980__ $$aFullTexts
000200910 980__ $$aUNRESTRICTED
000200910 980__ $$abook
000200910 980__ $$aI:(DE-Juel1)IEK-5-20101013
000200910 981__ $$aI:(DE-Juel1)IMD-3-20101013