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Abstract

The Rashba effect, discovered in 1959, continues to supply fertile ground for fundamental research
and applications. It provided the basis for the proposal of the spin transistor by Datta and Das in 1990,
which has largely inspired the broad and dynamic field of spintronics. More recent developments
include new materials for the Rashba effect such as metal surfaces, interfaces and bulk materials. It has
also given rise to new phenomena such as spin currents and the spin Hall effect, including its quantized
version, which has led to the very active field of topological insulators. The Rashba effect plays a crucial
role in yet more exotic fields of physics such as the search for Majorana fermions at semiconductor-
superconductor interfaces and the interaction of ultracold atomic Bose and Fermi gases. Advances in
our understanding of Rashba-type spin-orbit couplings, both qualitatively and quantitatively, can be
obtained in many different ways. This focus issue brings together the wide range of research activities
on Rashba physics to further promote the development of our physical pictures and concepts in this
field. The present Editorial gives a brief account on the history of the Rashba effect including material
that was previously not easily accessible before summarizing the key results of the present focus issue
as a guidance to the reader.

The importance of spin-orbit (SO) coupling for the band structure of Bloch electrons was first noted by Elliott
[1,2] and Dresselhaus et al [3]. Elliott [2] pointed out that we obtain (at least) a two-fold spin degeneracy of the
energy bands E,, (k) for each wave vector k throughout the Brillouin zone if space inversion is a good symmetry
of the crystal structure. Dresselhaus et al [3] (see also [4]) demonstrated that the SO splitting of the atomic p
orbitals may qualitatively alter cyclotron resonance spectra in silicon and germanium.

Using group theory, Dresselhaus [5] studied the effect of SO coupling on semiconductors with the inversion
asymmetric zincblende structure, which is the crystal structure of many I1I-V and II-VI semiconductors such as
GaAs, InSb, and CdTe (see also [6]). He predicted an anisotropic spin splitting of the dispersion E (k), cubicin
the wave vector k for bands with symmetry Ig, which became known as ‘Dresselhaus SO splitting’.

The second important crystal structure besides zincblende, realized by many III-V and II-VI
semiconductors is the likewise inversion asymmetric wurtzite structure (e.g., GaN, CdS, and ZnO). In 1959
Rashba published two papers on the ‘Symmetry of Energy Bands in Crystals of Wurtzite Type’. Part I discussed
the ‘Symmetry of Bands Disregarding Spin-Orbit Interaction’ [7]. In the second part with the subtitle ‘Symmetry
of Bands with Spin-Orbit Interaction Included’ [8] published with Sheka, the authors demonstrated that the
spin splitting of the dispersion E (k) of s electrons near the I" point k = 0 islinear in k and isotropic for k
perpendicular to the wurtzite c axis so that we get a ring of extrema in the dispersion E (k). It is this feature which
we associate nowadays with Rashba SO coupling. However, Rashba’s second paper appeared in a special issue of
Fizika Tverdogo Tela that was not translated into English and that was hardly available even in the Soviet Union.
Thus it became rather difficult to trace back the Rashba effect to its origin.

Indeed, this paper contains a much more comprehensive study than just the proper derivation of what we
call today the Rashba effect, a fact which makes this work highly interesting for current research on materials
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with unusual dispersion curves. For this reason, we have appended an English translation' of this ‘hidden jewel’
which we hope will stimulate current research activities. Similar to Dresselhaus’ work [5], Rashba and Sheka
[7,8] considered not only the I" point k = 0, but all symmetry points in the Brillouin zone. This was due to the
factthatin 1959 the location of the valence and conduction band edges in k space was not yet firmly established
for many semiconductors. More complete band structure calculations for zincblende and wurtzite
semiconductors appeared much later [9, 10].

Related work was done by several authors including Glasser [11], Casella [12, 13], and Balkanski and des
Cloizeau [14]. Yet two features set Rashba’s early work apart from these other studies. Firstly, it was more
comprehensive. In particular, it included an explicit model for the k-linear spin splitting. Secondly and more
importantly, Rashba’s work from 1959 was not just in hindsight a breakthrough, but it was the starting point for
avisionary sequence of studies on SO coupling effects in solids. In a series of papers, Rashba and coauthors
studied the remarkable observable consequences of the k-linear SO coupling in wurtzite materials [15-18]. In
particular, the coupling between the configurational and spin motions makes it impossible to separate the
quantum transitions in a magnetic field into purely configurational and purely spin ones [ 19], an effect Rashba
coined ‘combined resonances’ [15]. The transitions thus provide a unique fingerprint for the nature of SO
coupling. While this work was initially motivated by the k-linear SO coupling in wurtzite materials, Rashba et al
expanded their analysis to zincblende materials [20-22] that were becoming increasingly popular at that time.
This seminal theoretical work was done with little experimental motivation. It anticipated many concepts and
ideas that have formed the foundations of today’s spintronics, see Rashba’s review [19]. Another early review of
this field was given by Yafet [23] that covered also a range of related topics. Experimental verifications of the
predicted phenomena followed only later [24-26]. A more complete review of combined resonances (also called
electric dipole spin resonances) can be found in [27]. This early work focused solely on bulk semiconductors.
Remarkably, we have lately observed a renaissance of the ‘bulk’ Rashba effect with the discovery of strong SO
effects in layered bulk materials like BiTel [28, 29], which is discussed in more detail below.

In the 1970s, quasi two-dimensional (2D) semiconductor systems became increasingly popular. Spin
splitting in such systems was studied first by Ohkawa and Uemura [30] who considered the quantized states in
the inversion layer on the surface of narrow-gap semiconductors. This theoretical work predicted a large k-linear
term in the 2D dispersion relation due to SO coupling. It was inspired by experiments by Antcliffe et al [31]
showing a beating pattern in the Shubnikov-de Haas oscillations measured for n-type inversion layers on Hg .79
Cd.21Te samples. Often, such beating patterns are taken as an indication for a spin splitting in the 2D
dispersion. Yet in the particular case of Antcliffe eral [31], the beating was likely due to the occupation of
multiple electric subbands [30].

Subsequently, Vas’ko and Prima [32, 33] studied theoretically the consequences of the k-linear splitting in
quasi-2D systems, including combined resonances and the non-equilibrium spin polarization induced by a
lateral electric field, nowadays often called the Edelstein effect [34]. In the 1970s, only few experiments [35]
motivated such studies.

In 1984 Bychkov and Rashba [36, 37] pointed out the analogies between the k-linear spin splitting in bulk
wurtzite and spin splitting in quasi-2D systems, which implies that many findings derived previously by Rashba
et al for bulk wurtzite materials are likewise relevant for quasi-2D systems. This theoretical work was inspired by
earlier experiments by Stein et al [38] and Stormer et al [39]. Stein et al [38] studied electron spin resonance on
GaAs-Al,Ga_,As heterostructures at finite magnetic fields B, suggesting a nonzero spin splitting even in the
limit B — 0 [40]. Stormer et al studied magnetotransport in a 2D hole system where they observed two distinct
sets of Shubnikov-de Haas oscillations suggesting a spin splitting of the hole states [41, 42].

The spin splitting in a bulk zincblende or wurtzite semiconductor is an intrinsic property that cannot be
altered in a given material. In quasi-2D systems the magnitude of the Rashba SO coupling depends on the shape
of the effective potential seen by the charge carriers which can be tuned by means of external electric gates. In
1990, Datta and Das [43] proposed the famous spin transistor where the electron spins precess in the effective
magnetic field due to SO coupling. By tuning the SO coupling via gates one can thus control the flow of electron
spins between spin polarized (ferromagnetic) source and drain contacts. The tunability of Rashba SO coupling
in quasi-2D semiconductor structures was first verified experimentally by Schultz et al [44], Engels et al [45] and
Nitta et al [46]. This tunability has much inspired the research field of spintronics. Subsequent work has studied
awide range of phenomena related to the tunable Rashba SO coupling and it has remained a very fruitful area of
research until today.

The Rashba effect has ever been influencing new material classes, the most important being the extension
from semiconductors [47] to surfaces of metals [48]. The first observation in angle-resolved photoemission
spectroscopy (ARPES) from metal surfaces succeeded in 1996 on the Au(111) surface [49], where the authors
already pointed out the importance of both the surface gradient and the steep nuclear Coulomb potential in

! English translation available as supplementary material at stacks.iop.org/NJP/17/050202/mmedia.
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heavy elements that made the observation possible. This has been directly confirmed by comparing Li-covered
(110) surfaces of W and Mo [50] and the role of both contributions have been clarified theoretically by tight-
binding models [51] and density-functional theory (DFT) calculations [52]. The Rashba splitting of Au(111)
became widely known through high-resolution photoemission work [53]. An important confirmation of the
Rashba splitting was obtained through direct measurement of the spin texture by spin-resolved photoemission,
first for a surface state on H-covered W(110) [54] and subsequently for Au(111) [55].

For Bi surfaces very large Rashba-type SO effects have been observed not only with ARPES [56], but also in
scanning tunneling microscopy (STM) exploiting the ‘spin-momentum locking’ of the electrons and comparing
the expected interference patterns for spinless and spinful cases [57]. The combination of Rashba effect and
exchange interaction makes it possible to observe in ARPES even very small band splittings as demonstrated for
clean and oxidized Gd surfaces [58]. The above-mentioned spin-momentum locking plays an important role in
the field of topological insulators [59]. Furthermore, it was observed that due to contamination of the surface by
residual gases a band bending occurs at the Bi,Ses surface, leading to the formation of a two-dimensional
electron gas (2DEG); the strong SO coupling effects in this compound give rise to an increasing Rashba splitting
of the 2DEG with increasing confining potential strength [60].

The largest Rashba-type SO effect so far has been found for a surface alloy of Bi/Ag(111) [61] where a Rashba
coefficient ag ~ 3.05 eVA was obtained, while elemental surfaces such as Ir(111) can show values of ag up to
1.3 eVA[62]. The idea of a Bi surface alloy has subsequently been transferred from a metal substrate to a
semiconductor substrate, Si [63]. Sihas also been used to study the Rashba effect of one-dimensional atom
chains of Au [64] and for a Tl-induced surface structure [65]. Heavy elements can induce strong SO coupling
effects in even the lightest elements, e.g., a large SO effect has been observed in the graphene Dirac cone by
proximity to Au [66].

At this point we should note that the concept of Rashba effect is applied here to states that can be rather
different from the 2DEG discussed by Bychkov and Rashba [36, 37]. In the field of semiconductors it was
realized early that hole states, which carry not only spin but also orbital angular momentum, show an intricate
behaviour both in spin splitting and spin polarization [67] that goes beyond the usual picture of the Rashba
effect. Similarly, surface alloys, as the ones mentioned above, can exhibit spin splittings non-linear in kj and
changes of the spin polarization within a single band [68].

More relevant for applications, investigations have recently shifted from surface effects towards interfaces
and bulk. Rashba-split quantum well states (QWSs) have been reported in Au/W(110) and Ag/W(110) [69] and
Pb/Si(111) [70]. As mentioned above, recently the Rashba effect was studied with renewed interest in bulk
materials such as BiTel [28, 29]. A Rashba effect was observed in several experiments [28, 71-73]. The
observation of the relevant Rashba-split bulk states succeeded in ARPES [71, 72] and by Shubnikov-de Haas
measurements [73].

Research has also been expanded to new compounds such as heterostructures combining the Rashba effect
in semiconductors with superconductors, motivated in part by the search for Majorana fermions [74]. Another
system of interest are oxide heterostructures that are insulating in the bulk but superconducting at the interface.
Here it is suspected that the Rashba-type SO coupling at the interface may play an important role in the
formation of the superconducting state [75].

The present focus issue gives an overview of current research on Rashba physics ranging from
semiconductors to ultracold atoms. In semiconductors it is not straightforward to discriminate experimentally
between the relative contributions of Rashba and Dresselhaus SO coupling. Here Wilde and Grundler [76]
demonstrate theoretically for 2D systems that magneto-oscillations in a tilted magnetic field provide a new
pathway to achieve this goal. Several related studies focus on how Dyakonov-Perel spin relaxation is influenced
by the interplay of Dresselhaus and Rashba effective magnetic fields [77-79]. The Dresselhaus term depends
strongly on the crystalline growth direction. Wang et al [77] have investigated symmetric and §-doped
asymmetric GaAs/AlGaAs (110) quantum wells, where Rashba and Dresselhaus effective fields are
perpendicular to each other. This leads to an anomalous dependence of the spin relaxation on an external
magnetic field [77]. For GaAs/AlGaAs (111) quantum wells, Balocchi et al [78] demonstrate experimentally that
the spin relaxation anisotropy can be either canceled or inverted by an electric bias. This effect is quantitatively
described in the framework of a spin density matrix formalism.

Golub and Ivchenko [79] have developed a general theory of current-induced spin orientation in 2D
semiconductor systems for the streaming regime of transport, where the electrons accelerate ballistically until
they reach the energy of optical phonons. The Dyakonov-Perel spin relaxation is drastically modified in this
regime. The current-induced spin orientation increases from ~0.1% in weak fields to ~2% for E ~ 1kV cm™
due to the anisotropic momentum distribution and decreases again when the field is increased further.
Moreover, field-induced oscillations of the spin polarization of photocarriers are predicted for particular fields
in this regime [79]. Spin filters based on a single loop are promising as spin valves or analyzers. Matityahu et al
[80] demonstrate theoretically that an interferometer made of two quantum dots or quantum nanowires with
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strong SO interaction and threaded by an Aharonov-Bohm flux can serve as a perfect spin filter. Under this
condition, perfect symmetry between the two branches is not required.

For silicene, Geissler et al [81] derive a model Hamiltonian from a group theoretical analysis including the
Rashba SO interaction. While in graphene the intrinsic SO interaction has to be larger than the Rashba SO
interaction to obtain the quantum spin Hall phase [82], the situation is different for buckled silicene, where the
sublattice symmetry is broken. The authors show that the quantum spin Hall insulator phase can be generated in
silicene by Rashba SO interaction [81].

In metal-covered semiconductors a breaking of the spatial inversion symmetry occurs both for the QWSs of
the metal and for the electrons in the space-charge region of the semiconductor. The latter is observed directly by
Lin et al [83] with ARPES for Ge(111) covered by two layers of Pb. Most states in the space-charge layer can be
derived from the bulk band edges of the semiconductor, but additionally—as a direct consequence of the Rashba
effect occurring at the interface to the metal—these experiments show the appearance of a ‘non-split-off’ band
derived from strongly SO-split states. The spin splitting of the QWSs of Pb films on Si(111) is likewise an effect of
SO coupling in an inversion asymmetric environment that can be observed in spin-resolved ARPES
measurements [70]. Slomski et al [84] observe a hybridization between such Rashba-split bands of opposite spin
polarization, indicating that interband SO coupling is important in the interaction of these QWSs. DFT
calculations and spin-resolved ARPES experiments demonstrate this spin-mixing effect mediated by SO
coupling in Pb films on Si.

The 3D Rashba splitting and Rashba-split surface states have been studied by Landolt et al [85] for BiTeCl,
and Eremeev et al [86] for BiTeBr and BiTel. ARPES and structural investigations show that the surface
electronic structure of BiTel depends sensitively on the termination and extrinsic and intrinsic defects. Fiedler
etal [87] point out that bulk stacking faults that invert the order of the stacking sequence can lead to two
coexisting domains with different surface terminations. DFT calculations show that the Te-terminated surface
of BiTeBr gives rise to a giant Rashba parameter of ag ~ 2 eVA [86]. BiTeClis also identified as a 3D Rashba
system with a large bulk band gap [85]. A large Rashba splitting of the bulk band is observed by ARPES and DFT.
The Te termination shows Rashba-split surface states; the Cl termination, however, undergoes photon-induced
changes of stoichiometry [85]. Also, on the topological insulator Bi,Te,Se with a composition tuned to the
topological transport regime, Miyamoto et al [88] observe a surface state with giant Rashba splitting in the
occupied states by spin-resolved ARPES. The authors point out that the magnitude of the splitting is compatible
with requirements for nanoscale spintronic devices.

Au(111) and W(110) have emerged as model systems for Rashba effects at metal surfaces [49, 50, 53-55].
While previously the occupied part of the Rashba-split Au(111) surface state was the focus of investigation
[49, 53, 55], Wissing et al [89] now investigate also the unoccupied part by spin- and angle-resolved inverse
photoemission, tracing it up to the band gap boundary. Moreover, they observe a spin dependence of bulk
transitions. Using one-step model calculations of the inverse photoemission process, they explain their
observation as initial-state effects.

The W(110) surface gives rise to Dirac-type surface states establishing a connection between Rashba and
topological insulator physics. This feature has partially been observed before [54] and has been studied more
recently with spin resolution [90, 91]. The circular dichroism obtained in ARPES due to this surface state is
analyzed using DFT coupled to one-step photoemission calculations taking into account initial and final states
[92, 93], Calculations of spin-dependent two-electron emission from this state by Mirhosseini et al [92] show
that measurements of the spin dependence of the exchange-correlation hole become feasible. Braun et al [93]
interpret the linear dispersion of W(110) surface states as the result of a very sensitive interplay between SO
interaction, relaxation of the first atomic layer and enhanced charge transfer at the surface. They obtain almost
quantitative agreement between photoemission calculations and experiment at low photon energies, and they
predict that the Dirac-like surface states give rise to unusual features that may even be observed using hard-x-ray
photoemission at 30 keV [93].

The modification of the spin-dependent surface electronic structure of W(110) by monolayer adsorbates
turns out to be rather complex. Shikin et al [94] compare Au, Ag and Cu monolayers by spin-resolved ARPES
and DFT calculations. In particular, they discuss why Ag/W(110) shows a larger Rashba SO splitting than Au/W
(110) despite the smaller atomic number. The influence of the strong SO interaction in W(110) extends also to
QWSs, e.g., in Auand Ag overlayers. By comparison between a W(110) substrate and Mo(110) as a control
sample, Shikin et al [95] find that QWSs of sp type are much more affected than those of d type due to different
degrees of localization.

Atomic and interfacial potential gradients affect the Rashba splitting in complex ways, as is revealed by
several studies on very different metal systems [94-96]. The giant Rashba splitting of the Ir(111) surface state
with ay ~ 1.3 eVA exists also underneath a graphene overlayer, but the surface state does not intersect the Fermi
energy. Using spin-resolved ARPES, Sanchez-Barriga et al [96] show that this state can be moved upwards and
downwards in energy without affecting the Rashba splitting by increasing the number of graphene layers and
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decorating them with Ir, Au, and Fe clusters, respectively. The results are supported by DFT calculations
including Green function embedding for a semi-infinite geometry.

Takayama et al [97] use thin films of Sb(111) and Bi(111) on Si to study the Rashba-split surface states by
spin-resolved ARPES: a reduction of the spin polarization away from the surface Brillouin zone center is
observed for Sb which does not appear for Bi and indicates strong interaction with bulk states. Ultrathin Bi films
on an insulating substrate permit an investigation of transport effects of the Rashba-split Bi(111) surface states.
Using a four-tip STM, Tono et al [98] measure transport for tip-tip distances below 1 ym. A magnetic CoFe-
coated carbon nanotube tip in comparison with a Pt-coated tip allows to detect current-induced spin
polarization due to the surface state. A quantitative theoretical analysis supports this result.

A Rashba-type SO splitting occurs also in atomic chains [64]. Crepaldi et al [99] study chain-like surface
alloys of Bi and Pb on Cu(110) using ARPES and DFT. The interaction with bulk Cu states leads to open and
warped Fermi surfaces and a k-dependent spin splitting perpendicular to the chains. The authors also find that
the splitting in Bi;—.Pb, overlayers can be tuned by changing the stoichiometry. Surface alloys of Bi/Ag(111),
Cu/Ag(111),and Pb/Ag(111) display giant Rashba splittings of occupied and unoccupied states, respectively. El-
Kareh et al [100] study the quasiparticle interference for Pb/Ag(111) using STM and compare to the theoretically
predicted spin polarization. The inertness of the Bi/Ag(111) surface alloy permits Cottin etal [101] to grow
organic molecules which interact very weakly with the substrate so that the surface state is also unaffected. Using
ARPES, Bentmann and Reinert [102] show that Na deposition enhances the Rashba splitting of the Bi/Cu(111)
surface alloy whereas it is reduced by Xe. This result is explained based on the spatial distribution of the wave
functions.

Significant experimental advances, as have been witnessed in spintronics and ultracold atomic gases, often
permit a new view on fundamental concepts that so far had little or no chance to be realized experimentally. The
concept of generalized spin electromagnetic fields is very useful in spintronics where, e.g., a spin electric field
generates a spin current and a spin magnetic field drives a spin Hall effect. Nakabayashi and Tatara [103] extend
the expressions for generalized spin electromagnetic fields under strong s-d exchange interaction for the Rashba
interaction. Among other results, extremely high electric and magnetic fields are predicted for nanoscale
structures. Experimental advances in SO-coupled cold atoms and topological insulators constitute also the
motivation to investigate how SO coupling influences the quantum mechanical measurement process. Sherman
and Sokolovski [104] consider a von Neumann or projective measurement of spin: in one example, spin
dynamics are mapped on a spatial walk, and the measurement-time averages of the spin components o, and o,
can be measured in a single short-time measurement. Fialko et al [105] consider a prototypical quantum spin
Hall system analytically and numerically: consequences for realizing a fractional quantum spin Hall effect in
electronic or ultracold atom systems are pointed out. When a normal metallic state is subjected to a Zeeman
field, the different Fermi surfaces for spin-up and -down electrons can lead to superconducting pairing with the
two Fermi surfaces displaced. This anisotropic superfluid phase is known as Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) phase and being sought for in Fermi gases of ultracold atoms. Dong et al [106] study a fermionic cold
atom system subjected to a Zeeman field and additionally to three-dimensional isotropic SO interaction. An
FFLO phase with asymmetric momentum distribution robust against interaction and finite temperature is
obtained.

In closing, we hope that the quality and diversity of the results presented in this Focus Issue demonstrate that
more than 50 years after its discovery the Rashba effect continues to be a source of inspiration for physicists that
stimulates exciting and important new research.
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