000200929 001__ 200929
000200929 005__ 20240712084458.0
000200929 0247_ $$2doi$$a10.1063/1.4921286
000200929 0247_ $$2ISSN$$a0021-8979
000200929 0247_ $$2ISSN$$a0148-6349
000200929 0247_ $$2ISSN$$a1089-7550
000200929 0247_ $$2WOS$$aWOS:000355918300036
000200929 0247_ $$2Handle$$a2128/16821
000200929 0247_ $$2altmetric$$aaltmetric:4067212
000200929 037__ $$aFZJ-2015-03276
000200929 082__ $$a530
000200929 1001_ $$0P:(DE-Juel1)130292$$aSchneemann, Matthias$$b0
000200929 245__ $$aElectric properties and carrier multiplication in breakdown sites in multi-crystalline silicon solar cells
000200929 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2015
000200929 3367_ $$2DRIVER$$aarticle
000200929 3367_ $$2DataCite$$aOutput Types/Journal article
000200929 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1433138418_14910
000200929 3367_ $$2BibTeX$$aARTICLE
000200929 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000200929 3367_ $$00$$2EndNote$$aJournal Article
000200929 520__ $$aThis paper studies the effective electrical size and carrier multiplication of breakdown sites in multi-crystalline silicon solar cells. The local series resistance limits the current of each breakdown site and is thereby linearizing the current-voltage characteristic. This fact allows the estimation of the effective electrical diameters to be as low as 100 nm. Using a laser beam induced current (LBIC) measurement with a high spatial resolution, we find carrier multiplication factors on the order of 30 (Zener-type breakdown) and 100 (avalanche breakdown) as new lower limits. Hence, we prove that also the so-called Zener-type breakdown is followed by avalanche multiplication. We explain that previous measurements of the carrier multiplication using thermography yield results higher than unity, only if the spatial defect density is high enough, and the illumination intensity is lower than what was used for the LBIC method. The individual series resistances of the breakdown sites limit the current through these breakdown sites. Therefore, the measured multiplication factors depend on the applied voltage as well as on the injected photocurrent. Both dependencies are successfully simulated using a series-resistance-limited diode model.
000200929 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000200929 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000200929 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b1$$eCorresponding Author$$ufzj
000200929 7001_ $$0P:(DE-Juel1)130225$$aCarius, Reinhard$$b2$$ufzj
000200929 7001_ $$0P:(DE-Juel1)143905$$aRau, Uwe$$b3$$ufzj
000200929 773__ $$0PERI:(DE-600)1476463-5$$a10.1063/1.4921286$$gVol. 117, no. 20, p. 205703 -$$n20$$p205703$$tJournal of applied physics$$v117$$x1089-7550$$y2015
000200929 8564_ $$uhttps://juser.fz-juelich.de/record/200929/files/1.4921286.pdf$$yOpenAccess
000200929 8564_ $$uhttps://juser.fz-juelich.de/record/200929/files/1.4921286.gif?subformat=icon$$xicon$$yOpenAccess
000200929 8564_ $$uhttps://juser.fz-juelich.de/record/200929/files/1.4921286.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000200929 8564_ $$uhttps://juser.fz-juelich.de/record/200929/files/1.4921286.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000200929 8564_ $$uhttps://juser.fz-juelich.de/record/200929/files/1.4921286.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000200929 8564_ $$uhttps://juser.fz-juelich.de/record/200929/files/1.4921286.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000200929 909CO $$ooai:juser.fz-juelich.de:200929$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000200929 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000200929 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130225$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000200929 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000200929 9130_ $$0G:(DE-HGF)POF2-111$$1G:(DE-HGF)POF2-110$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vThin Film Photovoltaics$$x0
000200929 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000200929 9141_ $$y2015
000200929 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000200929 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000200929 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000200929 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000200929 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000200929 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000200929 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000200929 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000200929 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000200929 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000200929 920__ $$lyes
000200929 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000200929 9801_ $$aFullTexts
000200929 980__ $$ajournal
000200929 980__ $$aVDB
000200929 980__ $$aUNRESTRICTED
000200929 980__ $$aI:(DE-Juel1)IEK-5-20101013
000200929 981__ $$aI:(DE-Juel1)IMD-3-20101013