000200931 001__ 200931
000200931 005__ 20210129215556.0
000200931 0247_ $$2doi$$a10.1080/15592324.2014.1003752
000200931 0247_ $$2WOS$$aWOS:000362317900002
000200931 0247_ $$2altmetric$$aaltmetric:3922954
000200931 0247_ $$2pmid$$apmid:25876181
000200931 037__ $$aFZJ-2015-03278
000200931 041__ $$aEnglish
000200931 082__ $$a580
000200931 1001_ $$0P:(DE-HGF)0$$aWeidenbach, Denise$$b0
000200931 245__ $$aShoot and root phenotyping of the barley mutant kcs6 (3-ketoacyl-CoAsynthase6) depleted in epicuticular waxes under water limitation
000200931 260__ $$aAustin, Tex.$$bLandes Bioscience$$c2015
000200931 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1433913210_12150
000200931 3367_ $$2DataCite$$aOutput Types/Journal article
000200931 3367_ $$00$$2EndNote$$aJournal Article
000200931 3367_ $$2BibTeX$$aARTICLE
000200931 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000200931 3367_ $$2DRIVER$$aarticle
000200931 520__ $$aAerial parts of plants are separated from the environment by a cuticle which functions in protection against desiccation and pathogen attack. Recently, we reported on a barley mutant with defect in the 3-KETOACYL-CoA-SYNTHASE (HvKCS6) gene, resulting in reduced coverage of the cuticle with epicuticular waxes. Spores of adapted and non-adapted powdery mildew fungi germinated less frequently on mutant leaves possibly because plant derived signals are missing. We used a shoot and root phenotyping facility to test whether depletion in epicuticular waxes negatively impacts plant performance under water-limiting conditions. While shoots of mutant plants grew slower at well-watered conditions than wild-type plants, they showed an equal or slightly better growth rate at water limitation. Also for roots, differences between mutant and parental line were less prominent at water-limiting as compared to well-watered conditions. Our results challenge the intuitive belief that reduced epicuticular wax might become a drawback at water limitation.
000200931 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000200931 7001_ $$0P:(DE-Juel1)129337$$aJansen, Marcus$$b1
000200931 7001_ $$0P:(DE-Juel1)129288$$aBodewein, Thomas$$b2$$ufzj
000200931 7001_ $$0P:(DE-Juel1)129373$$aNagel, Kerstin$$b3$$ufzj
000200931 7001_ $$0P:(DE-HGF)0$$aSchaffrath, Ulrich$$b4$$eCorresponding Author
000200931 773__ $$0PERI:(DE-600)2252855-6$$a10.1080/15592324.2014.1003752$$n4$$p1-3$$tPlant signaling & behavior$$v10$$x1559-2316$$y2015
000200931 909CO $$ooai:juser.fz-juelich.de:200931$$pVDB
000200931 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129288$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000200931 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129373$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000200931 9130_ $$0G:(DE-HGF)POF2-89582$$1G:(DE-HGF)POF2-89580$$2G:(DE-HGF)POF3-890$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000200931 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000200931 9141_ $$y2015
000200931 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000200931 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000200931 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000200931 920__ $$lyes
000200931 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000200931 980__ $$ajournal
000200931 980__ $$aVDB
000200931 980__ $$aI:(DE-Juel1)IBG-2-20101118
000200931 980__ $$aUNRESTRICTED