001     200940
005     20210129215556.0
024 7 _ |a 10.1016/j.biomaterials.2015.05.030
|2 doi
024 7 _ |a 0142-9612
|2 ISSN
024 7 _ |a 1878-5905
|2 ISSN
024 7 _ |a WOS:000357229900030
|2 WOS
024 7 _ |a altmetric:21825978
|2 altmetric
024 7 _ |a pmid:26026844
|2 pmid
037 _ _ |a FZJ-2015-03281
082 _ _ |a 570
100 1 _ |a Abagnale, Giulio
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Surface topography enhances differentiation of mesenchymal stem cells towards osteogenic and adipogenic lineages
260 _ _ |a Amsterdam [u.a.]
|c 2015
|b Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1433238474_14916
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Surface topography impacts on cell growth and differentiation, but it is not trivial to generate defined surface structures and to assess the relevance of specific topographic parameters. In this study, we have systematically compared in vitro differentiation of mesenchymal stem cells (MSCs) on a variety of groove/ridge structures. Micro- and nano-patterns were generated in polyimide using reactive ion etching or multi beam laser interference, respectively. These structures affected cell spreading and orientation of human MSCs, which was also reflected in focal adhesions morphology and size. Time-lapse demonstrated directed migration parallel to the nano-patterns. Overall, surface patterns clearly enhanced differentiation of MSCs towards specific lineages: 15 μm ridges increased adipogenic differentiation whereas 2 μm ridges enhanced osteogenic differentiation. Notably, nano-patterns with a periodicity of 650 nm increased differentiation towards both osteogenic and adipogenic lineages. However, in absence of differentiation media surface structures did neither induce differentiation, nor lineage-specific gene expression changes. Furthermore, nanostructures did not affect the YAP/TAZ complex, which is activated by substrate stiffness. Our results provide further insight into how structuring of tailored biomaterials and implant interfaces – e.g. by multi beam laser interference in sub-micrometer scale – do not induce differentiation of MSCs per se, but support their directed differentiation.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|x 0
|f POF III
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Steger, Michael
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Nguyen, Vu Hoa
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hersch, Nils
|0 P:(DE-Juel1)128815
|b 3
700 1 _ |a Sechi, Antonio
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Joussen, Sylvia
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Denecke, Bernd
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Merkel, Rudolf
|0 P:(DE-Juel1)128833
|b 7
700 1 _ |a Hoffmann, Bernd
|0 P:(DE-Juel1)128817
|b 8
700 1 _ |a Dreser, Alice
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Schnakenberg, Uwe
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Gillner, Arnold
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Wagner, Wolfgang
|0 P:(DE-HGF)0
|b 12
|e Corresponding Author
773 _ _ |a 10.1016/j.biomaterials.2015.05.030
|g Vol. 61, p. 316 - 326
|0 PERI:(DE-600)2004010-6
|p 316 - 326
|t Biomaterials
|v 61
|y 2015
|x 0142-9612
856 4 _ |u https://juser.fz-juelich.de/record/200940/files/1-s2.0-S0142961215004809-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/200940/files/1-s2.0-S0142961215004809-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/200940/files/1-s2.0-S0142961215004809-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/200940/files/1-s2.0-S0142961215004809-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/200940/files/1-s2.0-S0142961215004809-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/200940/files/1-s2.0-S0142961215004809-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:200940
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128815
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)128833
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)128817
913 0 _ |a DE-HGF
|b Schlüsseltechnologien
|l BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|1 G:(DE-HGF)POF2-450
|0 G:(DE-HGF)POF2-453
|2 G:(DE-HGF)POF2-400
|v Physics of the Cell
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-7-20110106
|k ICS-7
|l Biomechanik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-7-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-2-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21