000200952 001__ 200952
000200952 005__ 20210129215558.0
000200952 0247_ $$2doi$$a10.1007/s00429-015-1060-5
000200952 0247_ $$2pmid$$apmid:25982222
000200952 0247_ $$2ISSN$$a1863-2653
000200952 0247_ $$2ISSN$$a1863-2661
000200952 0247_ $$2WOS$$aWOS:000377012100013
000200952 0247_ $$2Handle$$a2128/15824
000200952 0247_ $$2altmetric$$aaltmetric:4003054
000200952 037__ $$aFZJ-2015-03290
000200952 041__ $$aENG
000200952 082__ $$a610
000200952 1001_ $$0P:(DE-Juel1)162109$$aReid, Andrew$$b0$$eCorresponding author
000200952 245__ $$aMultimodal connectivity mapping of the human left anterior and posterior lateral prefrontal cortex.
000200952 260__ $$aBerlin$$bSpringer$$c2016
000200952 3367_ $$2DRIVER$$aarticle
000200952 3367_ $$2DataCite$$aOutput Types/Journal article
000200952 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1510297498_27060
000200952 3367_ $$2BibTeX$$aARTICLE
000200952 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000200952 3367_ $$00$$2EndNote$$aJournal Article
000200952 520__ $$aWorking memory is essential for many of our distinctly human abilities, including reasoning, problem solving, and planning. Research spanning many decades has helped to refine our understanding of this high-level function as comprising several hierarchically organized components, some which maintain information in the conscious mind, and others which manipulate and reorganize this information in useful ways. In the neocortex, these processes are likely implemented by a distributed frontoparietal network, with more posterior regions serving to maintain volatile information, and more anterior regions subserving the manipulation of this information. Recent meta-analytic findings have identified the anterior lateral prefrontal cortex, in particular, as being generally engaged by working memory tasks, while the posterior lateral prefrontal cortex was more strongly associated with the cognitive load required by these tasks. These findings suggest specific roles for these regions in the cognitive control processes underlying working memory. To further characterize these regions, we applied three distinct seed-based methods for determining cortical connectivity. Specifically, we employed meta-analytic connectivity mapping across task-based fMRI experiments, resting-state BOLD correlations, and VBM-based structural covariance. We found a frontoparietal pattern of convergence which strongly resembled the working memory networks identified in previous research. A contrast between anterior and posterior parts of the lateral prefrontal cortex revealed distinct connectivity patterns consistent with the idea of a hierarchical organization of frontoparietal networks. Moreover, we found a distributed network that was anticorrelated with the anterior seed region, which included most of the default mode network and a subcomponent related to social and emotional processing. These findings fit well with the internal attention model of working memory, in which representation of information is processed according to an anteroposterior gradient of abstract-to-concrete representations.
000200952 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000200952 536__ $$0G:(EU-Grant)604102$$aHBP - The Human Brain Project (604102)$$c604102$$fFP7-ICT-2013-FET-F$$x1
000200952 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x2
000200952 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de, PubMed,
000200952 7001_ $$0P:(DE-Juel1)136848$$aBzdok, Danilo$$b1
000200952 7001_ $$0P:(DE-Juel1)131693$$aLangner, Robert$$b2
000200952 7001_ $$0P:(DE-HGF)0$$aFox, Peter T$$b3
000200952 7001_ $$0P:(DE-HGF)0$$aLaird, Angela R$$b4
000200952 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b5
000200952 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b6
000200952 7001_ $$0P:(DE-HGF)0$$aEickhoff, Claudia R$$b7
000200952 773__ $$0PERI:(DE-600)2303775-1$$a10.1007/s00429-015-1060-5$$n5$$p2589-2605$$tBrain structure & function$$v221$$x1863-2661$$y2016
000200952 8564_ $$uhttps://juser.fz-juelich.de/record/200952/files/art_10.1007_s00429-015-1060-5.pdf$$yRestricted
000200952 8564_ $$uhttps://juser.fz-juelich.de/record/200952/files/art_10.1007_s00429-015-1060-5.gif?subformat=icon$$xicon$$yRestricted
000200952 8564_ $$uhttps://juser.fz-juelich.de/record/200952/files/art_10.1007_s00429-015-1060-5.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000200952 8564_ $$uhttps://juser.fz-juelich.de/record/200952/files/art_10.1007_s00429-015-1060-5.jpg?subformat=icon-180$$xicon-180$$yRestricted
000200952 8564_ $$uhttps://juser.fz-juelich.de/record/200952/files/art_10.1007_s00429-015-1060-5.jpg?subformat=icon-640$$xicon-640$$yRestricted
000200952 8564_ $$uhttps://juser.fz-juelich.de/record/200952/files/art_10.1007_s00429-015-1060-5.pdf?subformat=pdfa$$xpdfa$$yRestricted
000200952 8564_ $$uhttps://juser.fz-juelich.de/record/200952/files/nihms764387.pdf$$yOpenAccess
000200952 8564_ $$uhttps://juser.fz-juelich.de/record/200952/files/nihms764387.gif?subformat=icon$$xicon$$yOpenAccess
000200952 8564_ $$uhttps://juser.fz-juelich.de/record/200952/files/nihms764387.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000200952 8564_ $$uhttps://juser.fz-juelich.de/record/200952/files/nihms764387.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000200952 8564_ $$uhttps://juser.fz-juelich.de/record/200952/files/nihms764387.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000200952 8564_ $$uhttps://juser.fz-juelich.de/record/200952/files/nihms764387.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000200952 909CO $$ooai:juser.fz-juelich.de:200952$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000200952 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000200952 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000200952 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000200952 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRAIN STRUCT FUNCT : 2013
000200952 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000200952 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000200952 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000200952 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000200952 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000200952 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000200952 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000200952 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000200952 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000200952 9141_ $$y2016
000200952 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162109$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000200952 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136848$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000200952 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131693$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000200952 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich$$b5$$kFZJ
000200952 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000200952 9130_ $$0G:(DE-HGF)POF2-333$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vPathophysiological Mechanisms of Neurological and Psychiatric Diseases$$x0
000200952 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000200952 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000200952 980__ $$ajournal
000200952 980__ $$aVDB
000200952 980__ $$aUNRESTRICTED
000200952 980__ $$aI:(DE-Juel1)INM-1-20090406
000200952 9801_ $$aFullTexts