001     200952
005     20210129215558.0
024 7 _ |2 doi
|a 10.1007/s00429-015-1060-5
024 7 _ |2 pmid
|a pmid:25982222
024 7 _ |2 ISSN
|a 1863-2653
024 7 _ |2 ISSN
|a 1863-2661
024 7 _ |2 WOS
|a WOS:000377012100013
024 7 _ |2 Handle
|a 2128/15824
024 7 _ |a altmetric:4003054
|2 altmetric
037 _ _ |a FZJ-2015-03290
041 _ _ |a ENG
082 _ _ |a 610
100 1 _ |0 P:(DE-Juel1)162109
|a Reid, Andrew
|b 0
|e Corresponding author
245 _ _ |a Multimodal connectivity mapping of the human left anterior and posterior lateral prefrontal cortex.
260 _ _ |a Berlin
|b Springer
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1510297498_27060
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Working memory is essential for many of our distinctly human abilities, including reasoning, problem solving, and planning. Research spanning many decades has helped to refine our understanding of this high-level function as comprising several hierarchically organized components, some which maintain information in the conscious mind, and others which manipulate and reorganize this information in useful ways. In the neocortex, these processes are likely implemented by a distributed frontoparietal network, with more posterior regions serving to maintain volatile information, and more anterior regions subserving the manipulation of this information. Recent meta-analytic findings have identified the anterior lateral prefrontal cortex, in particular, as being generally engaged by working memory tasks, while the posterior lateral prefrontal cortex was more strongly associated with the cognitive load required by these tasks. These findings suggest specific roles for these regions in the cognitive control processes underlying working memory. To further characterize these regions, we applied three distinct seed-based methods for determining cortical connectivity. Specifically, we employed meta-analytic connectivity mapping across task-based fMRI experiments, resting-state BOLD correlations, and VBM-based structural covariance. We found a frontoparietal pattern of convergence which strongly resembled the working memory networks identified in previous research. A contrast between anterior and posterior parts of the lateral prefrontal cortex revealed distinct connectivity patterns consistent with the idea of a hierarchical organization of frontoparietal networks. Moreover, we found a distributed network that was anticorrelated with the anterior seed region, which included most of the default mode network and a subcomponent related to social and emotional processing. These findings fit well with the internal attention model of working memory, in which representation of information is processed according to an anteroposterior gradient of abstract-to-concrete representations.
536 _ _ |0 G:(DE-HGF)POF3-571
|a 571 - Connectivity and Activity (POF3-571)
|c POF3-571
|f POF III
|x 0
536 _ _ |0 G:(EU-Grant)604102
|a HBP - The Human Brain Project (604102)
|c 604102
|f FP7-ICT-2013-FET-F
|x 1
536 _ _ |0 G:(DE-Juel1)HGF-SMHB-2013-2017
|a SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)
|c HGF-SMHB-2013-2017
|f SMHB
|x 2
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de, PubMed,
700 1 _ |0 P:(DE-Juel1)136848
|a Bzdok, Danilo
|b 1
700 1 _ |0 P:(DE-Juel1)131693
|a Langner, Robert
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Fox, Peter T
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Laird, Angela R
|b 4
700 1 _ |0 P:(DE-Juel1)131631
|a Amunts, Katrin
|b 5
700 1 _ |0 P:(DE-Juel1)131678
|a Eickhoff, Simon
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Eickhoff, Claudia R
|b 7
773 _ _ |0 PERI:(DE-600)2303775-1
|a 10.1007/s00429-015-1060-5
|n 5
|p 2589-2605
|t Brain structure & function
|v 221
|x 1863-2661
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/200952/files/art_10.1007_s00429-015-1060-5.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/200952/files/art_10.1007_s00429-015-1060-5.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/200952/files/art_10.1007_s00429-015-1060-5.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/200952/files/art_10.1007_s00429-015-1060-5.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/200952/files/art_10.1007_s00429-015-1060-5.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/200952/files/art_10.1007_s00429-015-1060-5.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/200952/files/nihms764387.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/200952/files/nihms764387.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/200952/files/nihms764387.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/200952/files/nihms764387.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/200952/files/nihms764387.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/200952/files/nihms764387.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:200952
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)162109
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)136848
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131693
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131631
|a Forschungszentrum Jülich
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131678
|a Forschungszentrum Jülich GmbH
|b 6
|k FZJ
913 0 _ |0 G:(DE-HGF)POF2-333
|1 G:(DE-HGF)POF2-330
|2 G:(DE-HGF)POF2-300
|a DE-HGF
|b Gesundheit
|l Funktion und Dysfunktion des Nervensystems
|v Pathophysiological Mechanisms of Neurological and Psychiatric Diseases
|x 0
913 1 _ |0 G:(DE-HGF)POF3-571
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Connectivity and Activity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b BRAIN STRUCT FUNCT : 2013
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21