001     200989
005     20210129215601.0
024 7 _ |a 10.1016/j.cub.2015.04.022
|2 doi
024 7 _ |a WOS:000355556600020
|2 WOS
024 7 _ |a 2128/13967
|2 Handle
024 7 _ |a altmetric:3976896
|2 altmetric
024 7 _ |a pmid:25959965
|2 pmid
037 _ _ |a FZJ-2015-03308
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Danielmeier, C.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Acetylcholine mediates behavioral and neural post-error control
260 _ _ |a London
|c 2015
|b Current Biology Ltd.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1490015223_19583
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Humans often commit errors when they are distracted by irrelevant information and no longer focus on what is relevant to the task at hand. Adjustments following errors are essential for optimizing goal achievement. The posterior medial frontal cortex (pMFC), a key area for monitoring errors, has been shown to trigger such post-error adjustments by modulating activity in visual cortical areas. However, the mechanisms by which pMFC controls sensory cortices are unknown. We provide evidence for a mechanism based on pMFC-induced recruitment of cholinergic projections to task-relevant sensory areas. Using fMRI in healthy volunteers, we found that error-related pMFC activity predicted subsequent adjustments in task-relevant visual brain areas. In particular, following an error, activity increased in those visual cortical areas involved in processing task-relevant stimulus features, whereas activity decreased in areas representing irrelevant, distracting features. Following treatment with the muscarinic acetylcholine receptor antagonist biperiden, activity in visual areas was no longer under control of error-related pMFC activity. This was paralleled by abolished post-error behavioral adjustments under biperiden. Our results reveal a prominent role of acetylcholine in cognitive control that has not been recognized thus far. Regaining optimal performance after errors critically depends on top-down control of perception driven by the pMFC and mediated by acetylcholine. This may explain the lack of adaptivity in conditions with reduced availability of cortical acetylcholine, such as Alzheimer’s disease.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
700 1 _ |a Allen, E. A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Jocham, G.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Onur, Özgür
|0 P:(DE-Juel1)131736
|b 3
700 1 _ |a Eichele, T.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ullsperger, M.
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1016/j.cub.2015.04.022
|0 PERI:(DE-600)2019214-9
|n 11
|p 1461-1468
|t Current biology
|v 25
|y 2015
|x 0960-9822
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/200989/files/1-s2.0-S0960982215004352-main-1.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/200989/files/1-s2.0-S0960982215004352-main-1.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/200989/files/1-s2.0-S0960982215004352-main-1.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/200989/files/1-s2.0-S0960982215004352-main-1.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/200989/files/1-s2.0-S0960982215004352-main-1.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/200989/files/1-s2.0-S0960982215004352-main-1.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:200989
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131736
913 0 _ |a DE-HGF
|b Gesundheit
|l Funktion und Dysfunktion des Nervensystems
|1 G:(DE-HGF)POF2-330
|0 G:(DE-HGF)POF2-333
|2 G:(DE-HGF)POF2-300
|v Pathophysiological Mechanisms of Neurological and Psychiatric Diseases
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CURR BIOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CURR BIOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21