000200990 001__ 200990
000200990 005__ 20210129215602.0
000200990 0247_ $$2doi$$a10.1002/hbm.22863
000200990 0247_ $$2WOS$$aWOS:000360209000019
000200990 0247_ $$2altmetric$$aaltmetric:4093181
000200990 0247_ $$2pmid$$apmid:26037537
000200990 037__ $$aFZJ-2015-03309
000200990 041__ $$aEnglish
000200990 082__ $$a610
000200990 1001_ $$0P:(DE-HGF)0$$aHoltbernd, F.$$b0
000200990 245__ $$aDopaminergic correlates of metabolic network activity in Parkinson’s disease
000200990 260__ $$aNew York, NY$$bWiley-Liss$$c2015
000200990 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1441627430_16214
000200990 3367_ $$2DataCite$$aOutput Types/Journal article
000200990 3367_ $$00$$2EndNote$$aJournal Article
000200990 3367_ $$2BibTeX$$aARTICLE
000200990 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000200990 3367_ $$2DRIVER$$aarticle
000200990 520__ $$aParkinson's disease (PD) is associated with distinct metabolic covariance patterns that relate to the motor and cognitive manifestations of the disorder. It is not known, however, how the expression of these patterns relates to measurements of nigrostriatal dopaminergic activity from the same individuals. To explore these associations, we studied 106 PD subjects who underwent cerebral PET with both 18F-fluorodeoxyglucose (FDG) and 18F-fluoro-L-dopa (FDOPA). Expression values for the PD motor- and cognition-related metabolic patterns (PDRP and PDCP, respectively) were computed for each subject; these measures were correlated with FDOPA uptake on a voxel-by-voxel basis. To explore the relationship between dopaminergic function and local metabolic activity, caudate and putamen FDOPA PET signal was correlated voxel-wise with FDG uptake over the entire brain. PDRP expression correlated with FDOPA uptake in caudate and putamen (P < 0.001), while PDCP expression correlated with uptake in the anterior striatum (P < 0.001). While statistically significant, the correlations were only of modest size, accounting for less than 20% of the overall variation in these measures. After controlling for PDCP expression, PDRP correlations were significant only in the posterior putamen. Of note, voxel-wise correlations between caudate/putamen FDOPA uptake and whole-brain FDG uptake were significant almost exclusively in PDRP regions. Overall, the data indicate that PDRP and PDCP expression correlates significantly with PET indices of presynaptic dopaminergic functioning obtained in the same individuals. Even so, the modest size of these correlations suggests that in PD patients, individual differences in network activity cannot be explained solely by nigrostriatal dopamine loss
000200990 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000200990 7001_ $$0P:(DE-HGF)0$$aMa, Y.$$b1
000200990 7001_ $$0P:(DE-HGF)0$$aPeng, S.$$b2
000200990 7001_ $$0P:(DE-HGF)0$$aSchwartz, F.$$b3
000200990 7001_ $$0P:(DE-HGF)0$$aTimmermann, L.$$b4
000200990 7001_ $$0P:(DE-HGF)0$$aKracht, L.$$b5
000200990 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon Rudolf$$b6
000200990 7001_ $$0P:(DE-HGF)0$$aTang, C. C.$$b7
000200990 7001_ $$0P:(DE-HGF)0$$aEidelberg, D.$$b8$$eCorresponding author
000200990 7001_ $$0P:(DE-HGF)0$$aEggers, C.$$b9
000200990 773__ $$0PERI:(DE-600)1492703-2$$a10.1002/hbm.22863$$n9$$p3575 - 3585$$tHuman brain mapping$$v36$$x1065-9471$$y2015
000200990 8564_ $$uhttps://juser.fz-juelich.de/record/200990/files/hbm22863.pdf$$yRestricted
000200990 8564_ $$uhttps://juser.fz-juelich.de/record/200990/files/hbm22863.gif?subformat=icon$$xicon$$yRestricted
000200990 8564_ $$uhttps://juser.fz-juelich.de/record/200990/files/hbm22863.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000200990 8564_ $$uhttps://juser.fz-juelich.de/record/200990/files/hbm22863.jpg?subformat=icon-180$$xicon-180$$yRestricted
000200990 8564_ $$uhttps://juser.fz-juelich.de/record/200990/files/hbm22863.jpg?subformat=icon-640$$xicon-640$$yRestricted
000200990 8564_ $$uhttps://juser.fz-juelich.de/record/200990/files/hbm22863.pdf?subformat=pdfa$$xpdfa$$yRestricted
000200990 909CO $$ooai:juser.fz-juelich.de:200990$$pVDB
000200990 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000200990 9130_ $$0G:(DE-HGF)POF2-333$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vPathophysiological Mechanisms of Neurological and Psychiatric Diseases$$x0
000200990 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000200990 9141_ $$y2015
000200990 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000200990 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000200990 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000200990 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHUM BRAIN MAPP : 2013
000200990 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000200990 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000200990 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000200990 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000200990 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000200990 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000200990 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bHUM BRAIN MAPP : 2013
000200990 920__ $$lyes
000200990 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000200990 980__ $$ajournal
000200990 980__ $$aVDB
000200990 980__ $$aI:(DE-Juel1)INM-3-20090406
000200990 980__ $$aUNRESTRICTED