001     200992
005     20210129215602.0
024 7 _ |a 10.1016/j.neuroimage.2015.05.101
|2 doi
024 7 _ |a WOS:000361182400005
|2 WOS
024 7 _ |a altmetric:4187395
|2 altmetric
024 7 _ |a pmid:26095089
|2 pmid
037 _ _ |a FZJ-2015-03311
041 _ _ |a English
082 _ _ |a 610
100 1 _ |0 P:(DE-HGF)0
|a Volz, L. J.
|b 0
245 _ _ |a Differential Modulation of Motor Network Connectivity during Movements of the Upper and Lower Limbs
260 _ _ |a Orlando, Fla.
|b Academic Press
|c 2015
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1436862364_20875
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Voluntary movements depend on a well-regulated interplay between the primary motor cortex (M1) and premotor areas. While to date the neural underpinnings of hand movements are relatively well understood, we only have rather limited knowledge on the cortical control of lower-limb movements. Given that our hands and feet have different roles for activities of daily living, with hand movements being more frequently used in a lateralized fashion, we hypothesized that such behavioral differences also impact onto network dynamics underlying upper and lower limb movements. We, therefore, used functional magnetic resonance imaging (fMRI) and dynamic causal modeling (DCM) to investigate differences in effective connectivity underlying isolated movements of the hands or feet in 16 healthy subjects. The connectivity analyses revealed that both movements of the hand and feet were accompanied by strong facilitatory coupling of the respective contralateral M1 representations with premotor areas of both hemispheres. However, excitatory influences were significantly lower for movements of the feet compared to hand movements. During hand movements, the M1hand representation ipsilateral to the movement was strongly inhibited by premotor regions and the contralateral M1 homologue. In contrast, interhemispheric inhibition was absent between the M1foot representations during foot movements. Furthermore, M1foot ipsilateral to the moving foot exerted promoting influences onto contralateral M1foot. In conclusion, the generally stronger and more lateralized coupling pattern associated with hand movements suggests distinct fine-tuning of cortical control to underlie voluntary movements with the upper compared to the lower limb.
536 _ _ |0 G:(DE-HGF)POF3-572
|a 572 - (Dys-)function and Plasticity (POF3-572)
|c POF3-572
|f POF III
|x 0
700 1 _ |0 P:(DE-Juel1)131678
|a Eickhoff, Simon
|b 1
700 1 _ |0 P:(DE-Juel1)165759
|a Pool, Eva-Maria
|b 2
700 1 _ |0 P:(DE-Juel1)131720
|a Fink, Gereon Rudolf
|b 3
700 1 _ |0 P:(DE-Juel1)161406
|a Grefkes, Christian
|b 4
|e Corresponding author
773 _ _ |0 PERI:(DE-600)1471418-8
|a 10.1016/j.neuroimage.2015.05.101
|p 44-53
|t NeuroImage
|v 119
|x 1053-8119
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/200992/files/1-s2.0-S1053811915005492-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/200992/files/1-s2.0-S1053811915005492-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/200992/files/1-s2.0-S1053811915005492-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/200992/files/1-s2.0-S1053811915005492-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/200992/files/1-s2.0-S1053811915005492-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/200992/files/1-s2.0-S1053811915005492-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:200992
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131678
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)165759
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131720
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)161406
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
913 0 _ |0 G:(DE-HGF)POF2-333
|1 G:(DE-HGF)POF2-330
|2 G:(DE-HGF)POF2-300
|a DE-HGF
|b Gesundheit
|l Funktion und Dysfunktion des Nervensystems
|v Pathophysiological Mechanisms of Neurological and Psychiatric Diseases
|x 0
913 1 _ |0 G:(DE-HGF)POF3-572
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b NEUROIMAGE : 2013
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b NEUROIMAGE : 2013
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)INM-1-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21